ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1111.4246
  4. Cited By
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo

The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo

18 November 2011
Matthew D. Hoffman
Andrew Gelman
ArXivPDFHTML

Papers citing "The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo"

50 / 894 papers shown
Title
Nonlinear System Identification: Learning while respecting physical
  models using a sequential Monte Carlo method
Nonlinear System Identification: Learning while respecting physical models using a sequential Monte Carlo method
A. Wigren
Johan Wågberg
Fredrik Lindsten
A. Wills
Thomas B. Schon
24
10
0
26 Oct 2022
Efficient Data Mosaicing with Simulation-based Inference
Efficient Data Mosaicing with Simulation-based Inference
Andrew Gambardella
Youngjun Choi
Doyo Choi
Jinjoon Lee
23
0
0
26 Oct 2022
History-Based, Bayesian, Closure for Stochastic Parameterization:
  Application to Lorenz '96
History-Based, Bayesian, Closure for Stochastic Parameterization: Application to Lorenz '96
Mohamed Aziz Bhouri
Pierre Gentine
AI4TS
AI4CE
33
6
0
26 Oct 2022
SPQR: An R Package for Semi-Parametric Density and Quantile Regression
SPQR: An R Package for Semi-Parametric Density and Quantile Regression
Steven G. Xu
Reetam Majumder
Brian J. Reich
16
0
0
26 Oct 2022
Sampling with Mollified Interaction Energy Descent
Sampling with Mollified Interaction Energy Descent
Lingxiao Li
Qiang Liu
Anna Korba
Mikhail Yurochkin
Justin Solomon
38
15
0
24 Oct 2022
Online Probabilistic Model Identification using Adaptive Recursive MCMC
Online Probabilistic Model Identification using Adaptive Recursive MCMC
Pedram Agand
Mo Chen
H. Taghirad
38
4
0
23 Oct 2022
Transport Reversible Jump Proposals
Transport Reversible Jump Proposals
L. Davies
Roberto Salomone
Matthew Sutton
Christopher C. Drovandi
BDL
24
1
0
22 Oct 2022
Adaptive Tuning for Metropolis Adjusted Langevin Trajectories
Adaptive Tuning for Metropolis Adjusted Langevin Trajectories
L. Riou-Durand
Pavel Sountsov
Jure Vogrinc
C. Margossian
Samuel Power
32
6
0
21 Oct 2022
Targeted active learning for probabilistic models
Targeted active learning for probabilistic models
Christopher Tosh
Mauricio Tec
Wesley Tansey
23
2
0
21 Oct 2022
Cox-Hawkes: doubly stochastic spatiotemporal Poisson processes
Cox-Hawkes: doubly stochastic spatiotemporal Poisson processes
Xenia Miscouridou
Samir Bhatt
G. Mohler
Seth Flaxman
Swapnil Mishra
19
4
0
21 Oct 2022
Transport Elliptical Slice Sampling
Transport Elliptical Slice Sampling
A. Cabezas
Christopher Nemeth
16
8
0
19 Oct 2022
Sampling using Adaptive Regenerative Processes
Sampling using Adaptive Regenerative Processes
Hector McKimm
Andi Q. Wang
M. Pollock
Christian P. Robert
Gareth O. Roberts
21
1
0
18 Oct 2022
Principled Pruning of Bayesian Neural Networks through Variational Free
  Energy Minimization
Principled Pruning of Bayesian Neural Networks through Variational Free Energy Minimization
Jim Beckers
Bart Van Erp
Ziyue Zhao
K. Kondrashov
Bert De Vries
AAML
21
5
0
17 Oct 2022
Resolving the Mixing Time of the Langevin Algorithm to its Stationary
  Distribution for Log-Concave Sampling
Resolving the Mixing Time of the Langevin Algorithm to its Stationary Distribution for Log-Concave Sampling
Jason M. Altschuler
Kunal Talwar
35
24
0
16 Oct 2022
A Variational Perspective on Generative Flow Networks
A Variational Perspective on Generative Flow Networks
Heiko Zimmermann
Fredrik Lindsten
Jan Willem van de Meent
C. A. Naesseth
22
32
0
14 Oct 2022
Marginalized particle Gibbs for multiple state-space models coupled
  through shared parameters
Marginalized particle Gibbs for multiple state-space models coupled through shared parameters
A. Wigren
Fredrik Lindsten
13
0
0
13 Oct 2022
Joint control variate for faster black-box variational inference
Joint control variate for faster black-box variational inference
Xi Wang
Tomas Geffner
Justin Domke
BDL
DRL
16
0
0
13 Oct 2022
Multi-Task Dynamical Systems
Multi-Task Dynamical Systems
Alex Bird
Christopher K. I. Williams
Christopher Hawthorne
AI4TS
8
1
0
08 Oct 2022
An Ordinal Latent Variable Model of Conflict Intensity
An Ordinal Latent Variable Model of Conflict Intensity
Niklas Stoehr
Lucas Torroba Hennigen
Josef Valvoda
Robert West
Ryan Cotterell
Aaron Schein
16
8
0
08 Oct 2022
Approximate Methods for Bayesian Computation
Approximate Methods for Bayesian Computation
Radu V. Craiu
Evgeny Levi
15
5
0
06 Oct 2022
Efficient probabilistic reconciliation of forecasts for real-valued and
  count time series
Efficient probabilistic reconciliation of forecasts for real-valued and count time series
Lorenzo Zambon
Dario Azzimonti
Giorgio Corani
BDL
AI4TS
21
5
0
05 Oct 2022
Compositional Score Modeling for Simulation-based Inference
Compositional Score Modeling for Simulation-based Inference
Tomas Geffner
George Papamakarios
A. Mnih
69
24
0
28 Sep 2022
hdtg: An R package for high-dimensional truncated normal simulation
hdtg: An R package for high-dimensional truncated normal simulation
Zhenyu Zhang
A. Chin
A. Nishimura
M. Suchard
13
2
0
23 Sep 2022
Liesel: A Probabilistic Programming Framework for Developing
  Semi-Parametric Regression Models and Custom Bayesian Inference Algorithms
Liesel: A Probabilistic Programming Framework for Developing Semi-Parametric Regression Models and Custom Bayesian Inference Algorithms
Hannes Riebl
P. Wiemann
Thomas Kneib
8
2
0
22 Sep 2022
Physics-Informed Machine Learning of Dynamical Systems for Efficient
  Bayesian Inference
Physics-Informed Machine Learning of Dynamical Systems for Efficient Bayesian Inference
Somayajulu L. N. Dhulipala
Yifeng Che
Michael D. Shields
33
0
0
19 Sep 2022
Optimal Scaling for Locally Balanced Proposals in Discrete Spaces
Optimal Scaling for Locally Balanced Proposals in Discrete Spaces
Haoran Sun
H. Dai
Dale Schuurmans
22
13
0
16 Sep 2022
On the Dissipation of Ideal Hamiltonian Monte Carlo Sampler
On the Dissipation of Ideal Hamiltonian Monte Carlo Sampler
Qijia Jiang
30
7
0
15 Sep 2022
Borch: A Deep Universal Probabilistic Programming Language
Borch: A Deep Universal Probabilistic Programming Language
Lewis Belcher
Johan Gudmundsson
Michael Green
BDL
AI4CE
UQCV
25
0
0
13 Sep 2022
BayesLDM: A Domain-Specific Language for Probabilistic Modeling of
  Longitudinal Data
BayesLDM: A Domain-Specific Language for Probabilistic Modeling of Longitudinal Data
Ka-Yee Tung
Steven De La Torre
Mohamed El Mistiri
Rebecca Braga De Braganca
Eric B. Hekler
Misha Pavel
D. Rivera
Pedja Klasnja
D. Spruijt-Metz
Benjamin M. Marlin
17
1
0
12 Sep 2022
Investigating the Impact of Model Misspecification in Neural
  Simulation-based Inference
Investigating the Impact of Model Misspecification in Neural Simulation-based Inference
Patrick W Cannon
Daniel Ward
Sebastian M. Schmon
22
34
0
05 Sep 2022
Bayesian order identification of ARMA models with projection predictive
  inference
Bayesian order identification of ARMA models with projection predictive inference
Yann McLatchie
Asael Alonzo Matamoros
David Kohns
Aki Vehtari
21
1
0
31 Aug 2022
An approximate diffusion process for environmental stochasticity in
  infectious disease transmission modelling
An approximate diffusion process for environmental stochasticity in infectious disease transmission modelling
Sanmitra Ghosh
Paul J. Birrell
Daniela De Angelis
13
2
0
30 Aug 2022
The case for fully Bayesian optimisation in small-sample trials
The case for fully Bayesian optimisation in small-sample trials
Yuji Saikai
17
0
0
30 Aug 2022
NeuralUQ: A comprehensive library for uncertainty quantification in
  neural differential equations and operators
NeuralUQ: A comprehensive library for uncertainty quantification in neural differential equations and operators
Zongren Zou
Xuhui Meng
Apostolos F. Psaros
George Karniadakis
AI4CE
25
36
0
25 Aug 2022
Fast emulation of density functional theory simulations using
  approximate Gaussian processes
Fast emulation of density functional theory simulations using approximate Gaussian processes
S. Stetzler
M. Grosskopf
E. Lawrence
18
0
0
24 Aug 2022
Efficient Utility Function Learning for Multi-Objective Parameter
  Optimization with Prior Knowledge
Efficient Utility Function Learning for Multi-Objective Parameter Optimization with Prior Knowledge
F. Khan
J. Dietrich
Christian Wirth
14
1
0
22 Aug 2022
Bias amplification in experimental social networks is reduced by
  resampling
Bias amplification in experimental social networks is reduced by resampling
Mathew D. Hardy
Bill D. Thompson
P. Krafft
Thomas L. Griffiths
14
1
0
15 Aug 2022
Intuitive Joint Priors for Bayesian Linear Multilevel Models: The R2D2M2
  prior
Intuitive Joint Priors for Bayesian Linear Multilevel Models: The R2D2M2 prior
Javier Enrique Aguilar
Paul-Christian Burkner
9
25
0
15 Aug 2022
Bayesian Inference with Latent Hamiltonian Neural Networks
Bayesian Inference with Latent Hamiltonian Neural Networks
Somayajulu L. N. Dhulipala
Yifeng Che
Michael D. Shields
BDL
31
3
0
12 Aug 2022
Sampling algorithms in statistical physics: a guide for statistics and
  machine learning
Sampling algorithms in statistical physics: a guide for statistics and machine learning
Michael F Faulkner
Samuel Livingstone
13
6
0
09 Aug 2022
Computing Bayes: From Then 'Til Now'
Computing Bayes: From Then 'Til Now'
G. Martin
David T. Frazier
Christian P. Robert
22
15
0
01 Aug 2022
A Bayesian hierarchical framework for emulating a complex crop yield
  simulator
A Bayesian hierarchical framework for emulating a complex crop yield simulator
M. M. Hasan
J. Cumming
22
0
0
26 Jul 2022
The Importance Markov Chain
The Importance Markov Chain
Charly Andral
Randal Douc
Hugo Marival
Christian P. Robert
18
4
0
17 Jul 2022
Split Hamiltonian Monte Carlo revisited
Split Hamiltonian Monte Carlo revisited
F. Casas
J. Sanz-Serna
Luke Shaw
16
8
0
15 Jul 2022
Lapse risk modelling in insurance: a Bayesian mixture approach
Lapse risk modelling in insurance: a Bayesian mixture approach
Viviana G. R. Lobo
T. C. Fonseca
M. Alves
11
0
0
14 Jul 2022
BR-SNIS: Bias Reduced Self-Normalized Importance Sampling
BR-SNIS: Bias Reduced Self-Normalized Importance Sampling
Gabriel Victorino Cardoso
S. Samsonov
Achille Thin
Eric Moulines
Jimmy Olsson
34
6
0
13 Jul 2022
Variational Inference of overparameterized Bayesian Neural Networks: a
  theoretical and empirical study
Variational Inference of overparameterized Bayesian Neural Networks: a theoretical and empirical study
Tom Huix
Szymon Majewski
Alain Durmus
Eric Moulines
Anna Korba
BDL
18
6
0
08 Jul 2022
Accelerating Hamiltonian Monte Carlo via Chebyshev Integration Time
Accelerating Hamiltonian Monte Carlo via Chebyshev Integration Time
Jun-Kun Wang
Andre Wibisono
27
9
0
05 Jul 2022
Discrete Langevin Sampler via Wasserstein Gradient Flow
Discrete Langevin Sampler via Wasserstein Gradient Flow
Haoran Sun
H. Dai
Bo Dai
Haomin Zhou
Dale Schuurmans
BDL
42
19
0
29 Jun 2022
Reconstructing the Universe with Variational self-Boosted Sampling
Reconstructing the Universe with Variational self-Boosted Sampling
Chirag Modi
Yin Li
David M. Blei
13
8
0
28 Jun 2022
Previous
123...678...161718
Next