Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1111.4246
Cited By
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
18 November 2011
Matthew D. Hoffman
Andrew Gelman
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo"
50 / 894 papers shown
Title
Nonlinear System Identification: Learning while respecting physical models using a sequential Monte Carlo method
A. Wigren
Johan Wågberg
Fredrik Lindsten
A. Wills
Thomas B. Schon
24
10
0
26 Oct 2022
Efficient Data Mosaicing with Simulation-based Inference
Andrew Gambardella
Youngjun Choi
Doyo Choi
Jinjoon Lee
23
0
0
26 Oct 2022
History-Based, Bayesian, Closure for Stochastic Parameterization: Application to Lorenz '96
Mohamed Aziz Bhouri
Pierre Gentine
AI4TS
AI4CE
33
6
0
26 Oct 2022
SPQR: An R Package for Semi-Parametric Density and Quantile Regression
Steven G. Xu
Reetam Majumder
Brian J. Reich
16
0
0
26 Oct 2022
Sampling with Mollified Interaction Energy Descent
Lingxiao Li
Qiang Liu
Anna Korba
Mikhail Yurochkin
Justin Solomon
38
15
0
24 Oct 2022
Online Probabilistic Model Identification using Adaptive Recursive MCMC
Pedram Agand
Mo Chen
H. Taghirad
38
4
0
23 Oct 2022
Transport Reversible Jump Proposals
L. Davies
Roberto Salomone
Matthew Sutton
Christopher C. Drovandi
BDL
24
1
0
22 Oct 2022
Adaptive Tuning for Metropolis Adjusted Langevin Trajectories
L. Riou-Durand
Pavel Sountsov
Jure Vogrinc
C. Margossian
Samuel Power
32
6
0
21 Oct 2022
Targeted active learning for probabilistic models
Christopher Tosh
Mauricio Tec
Wesley Tansey
23
2
0
21 Oct 2022
Cox-Hawkes: doubly stochastic spatiotemporal Poisson processes
Xenia Miscouridou
Samir Bhatt
G. Mohler
Seth Flaxman
Swapnil Mishra
19
4
0
21 Oct 2022
Transport Elliptical Slice Sampling
A. Cabezas
Christopher Nemeth
16
8
0
19 Oct 2022
Sampling using Adaptive Regenerative Processes
Hector McKimm
Andi Q. Wang
M. Pollock
Christian P. Robert
Gareth O. Roberts
21
1
0
18 Oct 2022
Principled Pruning of Bayesian Neural Networks through Variational Free Energy Minimization
Jim Beckers
Bart Van Erp
Ziyue Zhao
K. Kondrashov
Bert De Vries
AAML
21
5
0
17 Oct 2022
Resolving the Mixing Time of the Langevin Algorithm to its Stationary Distribution for Log-Concave Sampling
Jason M. Altschuler
Kunal Talwar
35
24
0
16 Oct 2022
A Variational Perspective on Generative Flow Networks
Heiko Zimmermann
Fredrik Lindsten
Jan Willem van de Meent
C. A. Naesseth
22
32
0
14 Oct 2022
Marginalized particle Gibbs for multiple state-space models coupled through shared parameters
A. Wigren
Fredrik Lindsten
13
0
0
13 Oct 2022
Joint control variate for faster black-box variational inference
Xi Wang
Tomas Geffner
Justin Domke
BDL
DRL
16
0
0
13 Oct 2022
Multi-Task Dynamical Systems
Alex Bird
Christopher K. I. Williams
Christopher Hawthorne
AI4TS
8
1
0
08 Oct 2022
An Ordinal Latent Variable Model of Conflict Intensity
Niklas Stoehr
Lucas Torroba Hennigen
Josef Valvoda
Robert West
Ryan Cotterell
Aaron Schein
16
8
0
08 Oct 2022
Approximate Methods for Bayesian Computation
Radu V. Craiu
Evgeny Levi
15
5
0
06 Oct 2022
Efficient probabilistic reconciliation of forecasts for real-valued and count time series
Lorenzo Zambon
Dario Azzimonti
Giorgio Corani
BDL
AI4TS
21
5
0
05 Oct 2022
Compositional Score Modeling for Simulation-based Inference
Tomas Geffner
George Papamakarios
A. Mnih
69
24
0
28 Sep 2022
hdtg: An R package for high-dimensional truncated normal simulation
Zhenyu Zhang
A. Chin
A. Nishimura
M. Suchard
13
2
0
23 Sep 2022
Liesel: A Probabilistic Programming Framework for Developing Semi-Parametric Regression Models and Custom Bayesian Inference Algorithms
Hannes Riebl
P. Wiemann
Thomas Kneib
8
2
0
22 Sep 2022
Physics-Informed Machine Learning of Dynamical Systems for Efficient Bayesian Inference
Somayajulu L. N. Dhulipala
Yifeng Che
Michael D. Shields
33
0
0
19 Sep 2022
Optimal Scaling for Locally Balanced Proposals in Discrete Spaces
Haoran Sun
H. Dai
Dale Schuurmans
22
13
0
16 Sep 2022
On the Dissipation of Ideal Hamiltonian Monte Carlo Sampler
Qijia Jiang
30
7
0
15 Sep 2022
Borch: A Deep Universal Probabilistic Programming Language
Lewis Belcher
Johan Gudmundsson
Michael Green
BDL
AI4CE
UQCV
25
0
0
13 Sep 2022
BayesLDM: A Domain-Specific Language for Probabilistic Modeling of Longitudinal Data
Ka-Yee Tung
Steven De La Torre
Mohamed El Mistiri
Rebecca Braga De Braganca
Eric B. Hekler
Misha Pavel
D. Rivera
Pedja Klasnja
D. Spruijt-Metz
Benjamin M. Marlin
17
1
0
12 Sep 2022
Investigating the Impact of Model Misspecification in Neural Simulation-based Inference
Patrick W Cannon
Daniel Ward
Sebastian M. Schmon
22
34
0
05 Sep 2022
Bayesian order identification of ARMA models with projection predictive inference
Yann McLatchie
Asael Alonzo Matamoros
David Kohns
Aki Vehtari
21
1
0
31 Aug 2022
An approximate diffusion process for environmental stochasticity in infectious disease transmission modelling
Sanmitra Ghosh
Paul J. Birrell
Daniela De Angelis
13
2
0
30 Aug 2022
The case for fully Bayesian optimisation in small-sample trials
Yuji Saikai
17
0
0
30 Aug 2022
NeuralUQ: A comprehensive library for uncertainty quantification in neural differential equations and operators
Zongren Zou
Xuhui Meng
Apostolos F. Psaros
George Karniadakis
AI4CE
25
36
0
25 Aug 2022
Fast emulation of density functional theory simulations using approximate Gaussian processes
S. Stetzler
M. Grosskopf
E. Lawrence
18
0
0
24 Aug 2022
Efficient Utility Function Learning for Multi-Objective Parameter Optimization with Prior Knowledge
F. Khan
J. Dietrich
Christian Wirth
14
1
0
22 Aug 2022
Bias amplification in experimental social networks is reduced by resampling
Mathew D. Hardy
Bill D. Thompson
P. Krafft
Thomas L. Griffiths
14
1
0
15 Aug 2022
Intuitive Joint Priors for Bayesian Linear Multilevel Models: The R2D2M2 prior
Javier Enrique Aguilar
Paul-Christian Burkner
9
25
0
15 Aug 2022
Bayesian Inference with Latent Hamiltonian Neural Networks
Somayajulu L. N. Dhulipala
Yifeng Che
Michael D. Shields
BDL
31
3
0
12 Aug 2022
Sampling algorithms in statistical physics: a guide for statistics and machine learning
Michael F Faulkner
Samuel Livingstone
13
6
0
09 Aug 2022
Computing Bayes: From Then 'Til Now'
G. Martin
David T. Frazier
Christian P. Robert
22
15
0
01 Aug 2022
A Bayesian hierarchical framework for emulating a complex crop yield simulator
M. M. Hasan
J. Cumming
22
0
0
26 Jul 2022
The Importance Markov Chain
Charly Andral
Randal Douc
Hugo Marival
Christian P. Robert
18
4
0
17 Jul 2022
Split Hamiltonian Monte Carlo revisited
F. Casas
J. Sanz-Serna
Luke Shaw
16
8
0
15 Jul 2022
Lapse risk modelling in insurance: a Bayesian mixture approach
Viviana G. R. Lobo
T. C. Fonseca
M. Alves
11
0
0
14 Jul 2022
BR-SNIS: Bias Reduced Self-Normalized Importance Sampling
Gabriel Victorino Cardoso
S. Samsonov
Achille Thin
Eric Moulines
Jimmy Olsson
34
6
0
13 Jul 2022
Variational Inference of overparameterized Bayesian Neural Networks: a theoretical and empirical study
Tom Huix
Szymon Majewski
Alain Durmus
Eric Moulines
Anna Korba
BDL
18
6
0
08 Jul 2022
Accelerating Hamiltonian Monte Carlo via Chebyshev Integration Time
Jun-Kun Wang
Andre Wibisono
27
9
0
05 Jul 2022
Discrete Langevin Sampler via Wasserstein Gradient Flow
Haoran Sun
H. Dai
Bo Dai
Haomin Zhou
Dale Schuurmans
BDL
42
19
0
29 Jun 2022
Reconstructing the Universe with Variational self-Boosted Sampling
Chirag Modi
Yin Li
David M. Blei
13
8
0
28 Jun 2022
Previous
1
2
3
...
6
7
8
...
16
17
18
Next