Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1111.4246
Cited By
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
18 November 2011
Matthew D. Hoffman
Andrew Gelman
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo"
50 / 893 papers shown
Title
Renormalizing Diffusion Models
Jordan S. Cotler
Semon Rezchikov
DiffM
AI4CE
35
11
0
23 Aug 2023
Nonlinear Hamiltonian Monte Carlo & its Particle Approximation
Nawaf Bou-Rabee
Katharina Schuh
23
7
0
22 Aug 2023
Bayesian polynomial neural networks and polynomial neural ordinary differential equations
Colby Fronk
Jaewoong Yun
Prashant Singh
Linda R. Petzold
BDL
24
4
0
17 Aug 2023
Monte Carlo guided Diffusion for Bayesian linear inverse problems
Gabriel Victorino Cardoso
Yazid Janati
Sylvain Le Corff
Eric Moulines
DiffM
23
28
0
15 Aug 2023
Perfect simulation from unbiased simulation
G. Leigh
Wen-Hsi Yang
Montana Wickens
Amanda R. Northrop Queensland Department of Agriculture
10
1
0
14 Aug 2023
Towards the Development of an Uncertainty Quantification Protocol for the Natural Gas Industry
Babajide Kolade
14
0
0
05 Aug 2023
Simulation-based inference using surjective sequential neural likelihood estimation
Simon Dirmeier
Carlo Albert
F. Pérez-Cruz
26
6
0
02 Aug 2023
Learning Regionalization using Accurate Spatial Cost Gradients within a Differentiable High-Resolution Hydrological Model: Application to the French Mediterranean Region
Ngo Nghi Truyen Huynh
P. Garambois
Franccois Colleoni
B. Renard
H. Roux
J. Demargne
M. Jay-Allemand
P. Javelle
19
6
0
02 Aug 2023
An Agent-Based Model Framework for Utility-Based Cryptoeconomies
Kiran Karra
Tom Mellan
Maria Silva
Juan P. Madrigal-Cianci
Axel Cubero Cortes
Zixuan Zhang
8
1
0
27 Jul 2023
Rapid and Scalable Bayesian AB Testing
S. Chennu
Andrew Maher
C. Pangerl
Subash Prabanantham
Jae Hyeon Bae
Jamie Martin
Bud Goswami
30
0
0
27 Jul 2023
Scaling Integer Arithmetic in Probabilistic Programs
William X. Cao
Poorva Garg
Ryan Tjoa
Steven Holtzen
T. Millstein
Guy Van den Broeck
TPM
11
6
0
25 Jul 2023
Field-Level Inference with Microcanonical Langevin Monte Carlo
Adrian E Bayer
U. Seljak
Chirag Modi
28
9
0
18 Jul 2023
POMDP inference and robust solution via deep reinforcement learning: An application to railway optimal maintenance
Giacomo Arcieri
C. Hoelzl
Oliver Schwery
D. Štraub
K. Papakonstantinou
Eleni Chatzi
16
13
0
16 Jul 2023
Bayesian Analysis of Beta Autoregressive Moving Average Models
Aline Foerster Grande
G. Pumi
G. B. Cybis
11
1
0
13 Jul 2023
On the hierarchical Bayesian modelling of frequency response functions
T. Dardeno
K. Worden
N. Dervilis
Robin S. Mills
L. Bull
25
8
0
12 Jul 2023
Differentially Private Statistical Inference through
β
β
β
-Divergence One Posterior Sampling
Jack Jewson
Sahra Ghalebikesabi
Chris Holmes
27
2
0
11 Jul 2023
SpreadNUTS -- Moderate Dynamic Extension of Paths for No-U-Turn Sampling & Partitioning Visited Regions
Fareed Sheriff
13
0
0
09 Jul 2023
MALIBO: Meta-learning for Likelihood-free Bayesian Optimization
Jia-Yu Pan
Stefan Falkner
Felix Berkenkamp
Joaquin Vanschoren
32
1
0
07 Jul 2023
On the convergence of dynamic implementations of Hamiltonian Monte Carlo and No U-Turn Samplers
Alain Durmus
Samuel Gruffaz
Miika Kailas
E. Saksman
M. Vihola
25
5
0
07 Jul 2023
Adaptive multi-stage integration schemes for Hamiltonian Monte Carlo
Lorenzo Nagar
Mario Fernández-Pendás
J. Sanz-Serna
E. Akhmatskaya
13
1
0
05 Jul 2023
A framework for statistical modelling of the extremes of longitudinal data, applied to elite swimming
Harry Spearing
J. Tawn
David Irons
Tim Paulden
11
0
0
21 Jun 2023
A Bayesian Take on Gaussian Process Networks
Enrico Giudice
Jack Kuipers
G. Moffa
GP
29
3
0
20 Jun 2023
Adaptive Batch Sizes for Active Learning A Probabilistic Numerics Approach
Masaki Adachi
Satoshi Hayakawa
Martin Jørgensen
Xingchen Wan
Vu Nguyen
Harald Oberhauser
Michael A. Osborne
28
5
0
09 Jun 2023
Real-time whole-heart electromechanical simulations using Latent Neural Ordinary Differential Equations
M. Salvador
M. Strocchi
Francesco Regazzoni
Luca Dede'
Steven Niederer
A. Quarteroni
AI4CE
12
3
0
08 Jun 2023
Correction of Errors in Preference Ratings from Automated Metrics for Text Generation
Jan Deriu
Pius von Daniken
Don Tuggener
Mark Cieliebak
27
2
0
06 Jun 2023
Structured Voronoi Sampling
Afra Amini
Li Du
Ryan Cotterell
DiffM
27
1
0
05 Jun 2023
Gibbs Sampling the Posterior of Neural Networks
Giovanni Piccioli
Emanuele Troiani
Lenka Zdeborová
33
2
0
05 Jun 2023
An information field theory approach to Bayesian state and parameter estimation in dynamical systems
Kairui Hao
Ilias Bilionis
14
4
0
03 Jun 2023
Learning to solve Bayesian inverse problems: An amortized variational inference approach using Gaussian and Flow guides
Sharmila Karumuri
Ilias Bilionis
17
2
0
31 May 2023
Bayesian inference and neural estimation of acoustic wave propagation
Yongchao Huang
Yuhang He
Hong Ge
29
0
0
28 May 2023
On Consistent Bayesian Inference from Synthetic Data
Ossi Raisa
Joonas Jälkö
Antti Honkela
SyDa
26
2
0
26 May 2023
Inverse Uncertainty Quantification by Hierarchical Bayesian Modeling and Application in Nuclear System Thermal-Hydraulics Codes
Chen Wang
Xu Wu
T. Kozłowski
11
5
0
26 May 2023
Learning Rate Free Sampling in Constrained Domains
Louis Sharrock
Lester W. Mackey
Christopher Nemeth
33
2
0
24 May 2023
Masked Bayesian Neural Networks : Theoretical Guarantee and its Posterior Inference
Insung Kong
Dongyoon Yang
Jongjin Lee
Ilsang Ohn
Gyuseung Baek
Yongdai Kim
BDL
23
4
0
24 May 2023
Parameter estimation from an Ornstein-Uhlenbeck process with measurement noise
Simon Carter
Lilianne Mujica-Parodi
H. Strey
36
0
0
22 May 2023
ACRoBat: Optimizing Auto-batching of Dynamic Deep Learning at Compile Time
Pratik Fegade
Tianqi Chen
Phillip B. Gibbons
T. Mowry
19
2
0
17 May 2023
Model-based Validation as Probabilistic Inference
Harrison Delecki
Anthony Corso
Mykel J. Kochenderfer
20
7
0
17 May 2023
glmmPen: High Dimensional Penalized Generalized Linear Mixed Models
H. Heiling
N. Rashid
Quefeng Li
Joseph G. Ibrahim
11
4
0
14 May 2023
Efficient Computation of High-Dimensional Penalized Generalized Linear Mixed Models by Latent Factor Modeling of the Random Effects
H. Heiling
N. Rashid
Quefeng Li
X. Peng
Jen Jen Yeh
Joseph G. Ibrahim
9
4
0
14 May 2023
Robustness of Bayesian ordinal response model against outliers via divergence approach
Tomotaka Momozaki
Tomoyuki Nakagawa
17
1
0
12 May 2023
Locking and Quacking: Stacking Bayesian model predictions by log-pooling and superposition
Yuling Yao
L. Carvalho
Diego Mesquita
Yann McLatchie
14
3
0
12 May 2023
Using a Bayesian-Inference Approach to Calibrating Models for Simulation in Robotics
H. Unjhawala
Ruochun Zhang
Weihua Hu
Jinlong Wu
R. Serban
Dan Negrut
23
3
0
11 May 2023
A Generative Modeling Framework for Inferring Families of Biomechanical Constitutive Laws in Data-Sparse Regimes
Minglang Yin
Zongren Zou
Enrui Zhang
C. Cavinato
J. Humphrey
George Karniadakis
SyDa
MedIm
AI4CE
53
11
0
04 May 2023
What changes when you randomly choose BPE merge operations? Not much
Jonne Saleva
Constantine Lignos
22
6
0
04 May 2023
Lowering the Entry Bar to HPC-Scale Uncertainty Quantification
L. Seelinger
A. Reinarz
J. Bénézech
Mikkel B. Lykkegaard
L. Tamellini
Robert Scheichl
11
3
0
27 Apr 2023
Mixtures of Gaussian process experts based on kernel stick-breaking processes
Yuji Saikai
Khue-Dung Dang
17
0
0
26 Apr 2023
Leveraging Human Feedback to Evolve and Discover Novel Emergent Behaviors in Robot Swarms
Connor Mattson
Daniel S. Brown
16
5
0
25 Apr 2023
Self-Correcting Bayesian Optimization through Bayesian Active Learning
Carl Hvarfner
E. Hellsten
Frank Hutter
Luigi Nardi
GP
35
14
0
21 Apr 2023
A tutorial on the Bayesian statistical approach to inverse problems
Faaiq G. Waqar
Swati Patel
Cory M. Simon
11
5
0
15 Apr 2023
Bayesian Inference for Jump-Diffusion Approximations of Biochemical Reaction Networks
Derya Altıntan
Bastian Alt
Heinz Koeppl
13
0
0
13 Apr 2023
Previous
1
2
3
4
5
6
...
16
17
18
Next