Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1111.4246
Cited By
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
18 November 2011
Matthew D. Hoffman
Andrew Gelman
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo"
50 / 893 papers shown
Title
Learned Reference-based Diffusion Sampling for multi-modal distributions
Maxence Noble
Louis Grenioux
Marylou Gabrié
Alain Durmus
DiffM
31
2
0
25 Oct 2024
Noise-Aware Differentially Private Variational Inference
Talal Alrawajfeh
Joonas Jälkö
Antti Honkela
30
0
0
25 Oct 2024
AutoStep: Locally adaptive involutive MCMC
Tiange Liu
Nikola Surjanovic
Miguel Biron-Lattes
Alexandre Bouchard-Coté
Trevor Campbell
28
1
0
24 Oct 2024
Asymptotics for parametric martingale posteriors
Edwin Fong
Andrew Yiu
20
0
0
23 Oct 2024
Sacred and Profane: from the Involutive Theory of MCMC to Helpful Hamiltonian Hacks
N. Glatt-Holtz
Andrew J. Holbrook
J. Krometis
Cecilia F. Mondaini
Ami D. Sheth
28
0
0
22 Oct 2024
Stochastic Exploration of Real Varieties via Variety Distributions
David Kahle
Jonathan D Hauenstein
21
0
0
21 Oct 2024
Predictive variational inference: Learn the predictively optimal posterior distribution
Jinlin Lai
Yuling Yao
BDL
28
0
0
18 Oct 2024
Bayesian Experimental Design via Contrastive Diffusions
Jacopo Iollo
Christophe Heinkelé
Pierre Alliez
Florence Forbes
28
0
0
15 Oct 2024
Bayesian Optimisation with Unknown Hyperparameters: Regret Bounds Logarithmically Closer to Optimal
Juliusz Ziomek
Masaki Adachi
Michael A. Osborne
26
1
0
14 Oct 2024
Can We Predict Performance of Large Models across Vision-Language Tasks?
Qinyu Zhao
Ming Xu
Kartik Gupta
Akshay Asthana
Liang Zheng
Stephen Gould
39
0
0
14 Oct 2024
Variational Inference in Location-Scale Families: Exact Recovery of the Mean and Correlation Matrix
C. Margossian
Lawrence K. Saul
26
1
0
14 Oct 2024
pyhgf: A neural network library for predictive coding
Nicolas Legrand
Lilian A. E. Weber
Peter Thestrup Waade
Anna Hedvig Møller Daugaard
Mojtaba Khodadadi
Nace Mikuš
C. Mathys
AI4CE
23
0
0
11 Oct 2024
Linear-cost unbiased posterior estimates for crossed effects and matrix factorization models via couplings
Paolo Maria Ceriani
Giacomo Zanella
13
0
0
11 Oct 2024
Identifying latent disease factors differently expressed in patient subgroups using group factor analysis
Fabio S. Ferreira
John Ashburner
Arabella Bouzigues
Chatrin Suksasilp
Lucy L. Russell
...
Fermin Moreno
Barbara Borroni
Samuel Kaski
Jonathan D. Rohrer
J. Mourão-Miranda
CML
46
0
0
10 Oct 2024
Mixing of the No-U-Turn Sampler and the Geometry of Gaussian Concentration
Nawaf Bou-Rabee
Stefan Oberdörster
23
1
0
09 Oct 2024
Locating Information Gaps and Narrative Inconsistencies Across Languages: A Case Study of LGBT People Portrayals on Wikipedia
Farhan Samir
Chan Young Park
Anjalie Field
Vered Shwartz
Yulia Tsvetkov
36
1
0
05 Oct 2024
Is Gibbs sampling faster than Hamiltonian Monte Carlo on GLMs?
Son Luu
Zuheng Xu
Nikola Surjanovic
Miguel Biron-Lattes
Trevor Campbell
Alexandre Bouchard-Coté
20
0
0
04 Oct 2024
Response Estimation and System Identification of Dynamical Systems via Physics-Informed Neural Networks
M. Haywood-Alexander
Giacamo Arcieri
A. Kamariotis
Eleni Chatzi
26
1
0
02 Oct 2024
Bayesian estimation for novel geometric INGARCH model
Divya Kuttenchalil Andrews
N. Balakrishna
17
0
0
02 Oct 2024
Simulation-based inference with the Python Package sbijax
Simon Dirmeier
S. Ulzega
Antonietta Mira
Carlo Albert
21
1
0
28 Sep 2024
Implicit Dynamical Flow Fusion (IDFF) for Generative Modeling
Mohammad R. Rezaei
Rahul G. Krishnan
Milos R. Popovic
M. Lankarany
DiffM
24
0
0
22 Sep 2024
Amortized Bayesian Workflow (Extended Abstract)
Marvin Schmitt
Chengkun Li
Aki Vehtari
Luigi Acerbi
Paul-Christian Burkner
Stefan T. Radev
15
2
0
06 Sep 2024
Active learning for regression in engineering populations: A risk-informed approach
Daniel R. Clarkson
L. Bull
C. Wickramarachchi
Elizabeth J. Cross
T. Rogers
Keith Worden
Nikolaos Dervilis
A. Hughes
18
0
0
06 Sep 2024
A Bayesian Optimization through Sequential Monte Carlo and Statistical Physics-Inspired Techniques
A. Lebedev
Thomas Warford
M. Sahin
19
0
0
04 Sep 2024
Inverse decision-making using neural amortized Bayesian actors
Dominik Straub
Tobias F. Niehues
Jan Peters
Constantin Rothkopf
21
0
0
04 Sep 2024
Multitask learning for improved scour detection: A dynamic wave tank study
Simon M. Brealy
A. Hughes
T. Dardeno
L. Bull
Robin S. Mills
Nikolaos Dervilis
Keith Worden
21
1
0
29 Aug 2024
Gradient-free variational learning with conditional mixture networks
Conor Heins
Hao Wu
Dimitrije Marković
Alexander Tschantz
Jeff Beck
Christopher L. Buckley
BDL
27
2
0
29 Aug 2024
Sampling parameters of ordinary differential equations with Langevin dynamics that satisfy constraints
Chris Chi
J. Weare
Aaron R Dinner
21
2
0
28 Aug 2024
A Bayesian approach for fitting semi-Markov mixture models of cancer latency to individual-level data
Raphaël Morsomme
Shannon Holloway
Marc Ryser
Jason Xu
11
0
0
26 Aug 2024
More Options for Prelabor Rupture of Membranes, A Bayesian Analysis
Ashley Klein
Edward Raff
Elisabeth Seamon
Lily Foley
Timothy Bussert
14
0
0
20 Aug 2024
Randomized Transport Plans via Hierarchical Fully Probabilistic Design
Sarah Boufelja
Anthony Quinn
Robert Shorten
OT
39
0
0
04 Aug 2024
Anytime Trust Rating Dynamics in a Human-Robot Interaction Task
Jason Dekarske
Gregory Bales
Zhaodan Kong
Sanjay S. Joshi
18
0
0
01 Aug 2024
Importance Corrected Neural JKO Sampling
Johannes Hertrich
Robert Gruhlke
26
1
0
29 Jul 2024
Neural Surrogate HMC: Accelerated Hamiltonian Monte Carlo with a Neural Network Surrogate Likelihood
Linnea M. Wolniewicz
Peter Sadowski
Claudio Corti
BDL
23
0
0
29 Jul 2024
Flusion: Integrating multiple data sources for accurate influenza predictions
E. Ray
Yijin Wang
Russell D. Wolfinger
N. Reich
23
2
0
26 Jul 2024
Enhanced SMC
2
^2
2
: Leveraging Gradient Information from Differentiable Particle Filters Within Langevin Proposals
Conor Rosato
Joshua Murphy
Alessandro Varsi
P. Horridge
Simon Maskell
31
4
0
24 Jul 2024
Probabilistic Parameter Estimators and Calibration Metrics for Pose Estimation from Image Features
Romeo Valentin
Sydney M. Katz
Joonghyun Lee
Don Walker
Matthew Sorgenfrei
Mykel J. Kochenderfer
31
0
0
23 Jul 2024
Walking the Values in Bayesian Inverse Reinforcement Learning
Ondrej Bajgar
Alessandro Abate
Konstantinos Gatsis
Michael A. Osborne
OffRL
BDL
28
0
0
15 Jul 2024
posteriordb: Testing, Benchmarking and Developing Bayesian Inference Algorithms
Måns Magnusson
Jakob Torgander
Paul-Christian Burkner
Lu Zhang
Bob Carpenter
Aki Vehtari
42
6
0
06 Jul 2024
Randomized Physics-Informed Neural Networks for Bayesian Data Assimilation
Yifei Zong
D. Barajas-Solano
A. Tartakovsky
44
1
0
05 Jul 2024
Scalable expectation propagation for generalized linear models
Niccolò Anceschi
A. Fasano
Beatrice Franzolini
Giovanni Rebaudo
27
0
0
02 Jul 2024
Enabling Mixed Effects Neural Networks for Diverse, Clustered Data Using Monte Carlo Methods
Andrej Tschalzev
Paul Nitschke
Lukas Kirchdorfer
Stefan Lüdtke
Christian Bartelt
Heiner Stuckenschmidt
21
0
0
01 Jul 2024
Posterior Sampling with Denoising Oracles via Tilted Transport
Joan Bruna
Jiequn Han
DiffM
MedIm
27
4
0
30 Jun 2024
Fast Gibbs sampling for the local and global trend Bayesian exponential smoothing model
Xueying Long
Daniel F. Schmidt
Christoph Bergmeir
Slawek Smyl
13
0
0
29 Jun 2024
Electrostatics-based particle sampling and approximate inference
Yongchao Huang
DiffM
27
2
0
28 Jun 2024
Exact Bayesian Gaussian Cox Processes Using Random Integral
Bingjing Tang
Julia Palacios
23
0
0
28 Jun 2024
All Random Features Representations are Equivalent
Luke Sernau
Silvano Bonacina
Rif A. Saurous
14
0
0
27 Jun 2024
Recursive variational Gaussian approximation with the Whittle likelihood for linear non-Gaussian state space models
Bao Anh Vu
David Gunawan
Andrew Zammit-Mangion
19
1
0
23 Jun 2024
A SMART Mnemonic Sounds like "Glue Tonic": Mixing LLMs with Student Feedback to Make Mnemonic Learning Stick
Nishant Balepur
Matthew Shu
Alexander Hoyle
Alison Robey
Shi Feng
Seraphina Goldfarb-Tarrant
Jordan Boyd-Graber
44
1
0
21 Jun 2024
Bayesian neural networks for predicting uncertainty in full-field material response
G. Pasparakis
Lori Graham-Brady
Michael D. Shields
AI4CE
37
4
0
21 Jun 2024
Previous
1
2
3
4
5
...
16
17
18
Next