Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1111.4246
Cited By
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
18 November 2011
Matthew D. Hoffman
Andrew Gelman
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo"
50 / 893 papers shown
Title
Efficient MCMC Sampling with Expensive-to-Compute and Irregular Likelihoods
Conor Rosato
Harvinder Lehal
Simon Maskell
L. Devlin
Malcolm Strens
14
0
0
15 May 2025
Bayesian Estimation of Causal Effects Using Proxies of a Latent Interference Network
Bar Weinstein
Daniel Nevo
CML
21
0
0
13 May 2025
Uncertainty-Aware Surrogate-based Amortized Bayesian Inference for Computationally Expensive Models
Stefania Scheurer
Philipp Reiser
Tim Brünnette
Wolfgang Nowak
A. Guthke
Paul-Christian Burkner
31
0
0
13 May 2025
Improved Uncertainty Quantification in Physics-Informed Neural Networks Using Error Bounds and Solution Bundles
P. Flores
Olga Graf
P. Protopapas
K. Pichara
PINN
28
0
0
09 May 2025
HiBayES: A Hierarchical Bayesian Modeling Framework for AI Evaluation Statistics
Lennart Luettgau
Harry Coppock
Magda Dubois
Christopher Summerfield
Cozmin Ududec
28
0
0
08 May 2025
Boosting Statistic Learning with Synthetic Data from Pretrained Large Models
Jialong Jiang
Wenkang Hu
Jian Huang
Yuling Jiao
Xu Liu
DiffM
45
0
0
08 May 2025
Position: Epistemic Artificial Intelligence is Essential for Machine Learning Models to Know When They Do Not Know
Shireen Kudukkil Manchingal
Fabio Cuzzolin
46
0
0
08 May 2025
New affine invariant ensemble samplers and their dimensional scaling
Yifan Chen
16
0
0
05 May 2025
CoCoAFusE: Beyond Mixtures of Experts via Model Fusion
Aurelio Raffa Ugolini
M. Tanelli
Valentina Breschi
MoE
24
0
0
02 May 2025
Energy-Based Coarse-Graining in Molecular Dynamics: A Flow-Based Framework Without Data
Maximilian Stupp
P. S. Koutsourelakis
40
0
0
29 Apr 2025
Deep Physics Prior for First Order Inverse Optimization
Haoyu Yang
Kamyar Azizzadenesheli
Haoxing Ren
PINN
AI4CE
75
0
0
28 Apr 2025
Numerical Generalized Randomized Hamiltonian Monte Carlo for piecewise smooth target densities
Jimmy Huy Tran
T. S. Kleppe
BDL
43
0
0
25 Apr 2025
Diffusion-based supervised learning of generative models for efficient sampling of multimodal distributions
Hoang Tran
Zezhong Zhang
F. Bao
Dan Lu
Guannan Zhang
DiffM
42
0
0
20 Apr 2025
An Image is Worth
K
K
K
Topics: A Visual Structural Topic Model with Pretrained Image Embeddings
Matías Piqueras
Alexandra Segerberg
Matteo Magnani
Måns Magnusson
Nataša Sladoje
35
0
0
14 Apr 2025
Improving the evaluation of samplers on multi-modal targets
Louis Grenioux
Maxence Noble
Marylou Gabrié
92
0
0
11 Apr 2025
IAEmu: Learning Galaxy Intrinsic Alignment Correlations
Sneh Pandya
Yuanyuan Yang
N. V. Alfen
Jonathan Blazek
Robin Walters
26
1
0
07 Apr 2025
Multi-resolution Score-Based Variational Graphical Diffusion for Causal Disaster System Modeling and Inference
Xuechun Li
Shan Gao
Susu Xu
DiffM
28
0
0
05 Apr 2025
Incorporating the ChEES Criterion into Sequential Monte Carlo Samplers
Andrew Millard
Joshua Murphy
Daniel Frisch
Simon Maskell
BDL
43
0
0
03 Apr 2025
DeepRV: pre-trained spatial priors for accelerated disease mapping
Jhonathan Navott
Daniel Jenson
Seth Flaxman
Elizaveta Semenova
47
0
0
27 Mar 2025
Efficiently Vectorized MCMC on Modern Accelerators
Hugh Dance
Pierre Glaser
Peter Orbanz
Ryan P. Adams
47
0
0
20 Mar 2025
The Architecture and Evaluation of Bayesian Neural Networks
Alisa Sheinkman
Sara Wade
UQCV
BDL
67
0
0
14 Mar 2025
Learning and planning for optimal synergistic human-robot coordination in manufacturing contexts
Samuele Sandrini
M. Faroni
N. Pedrocchi
58
0
0
10 Mar 2025
Paths and Ambient Spaces in Neural Loss Landscapes
Daniel Dold
Julius Kobialka
Nicolai Palm
Emanuel Sommer
David Rügamer
Oliver Durr
AI4CE
56
0
0
05 Mar 2025
Weighted Euclidean Distance Matrices over Mixed Continuous and Categorical Inputs for Gaussian Process Models
Mingyu Pu
Songhao Wang
Haowei Wang
S. Ng
42
0
0
04 Mar 2025
Differentially private synthesis of Spatial Point Processes
Dangchan Kim
Chae Young Lim
60
0
0
25 Feb 2025
In-Context Parametric Inference: Point or Distribution Estimators?
Sarthak Mittal
Yoshua Bengio
Nikolay Malkin
Guillaume Lajoie
72
0
0
17 Feb 2025
Amortized In-Context Bayesian Posterior Estimation
Sarthak Mittal
Niels Leif Bracher
Guillaume Lajoie
P. Jaini
Marcus A. Brubaker
54
1
0
10 Feb 2025
Microcanonical Langevin Ensembles: Advancing the Sampling of Bayesian Neural Networks
Emanuel Sommer
Jakob Robnik
Giorgi Nozadze
U. Seljak
David Rügamer
BDL
UQCV
84
1
0
10 Feb 2025
Student-t processes as infinite-width limits of posterior Bayesian neural networks
Francesco Caporali
Stefano Favaro
Dario Trevisan
BDL
155
0
0
06 Feb 2025
Distribution Transformers: Fast Approximate Bayesian Inference With On-The-Fly Prior Adaptation
George Whittle
Juliusz Ziomek
Jacob Rawling
Michael A. Osborne
80
2
0
04 Feb 2025
Muti-Fidelity Prediction and Uncertainty Quantification with Laplace Neural Operators for Parametric Partial Differential Equations
Haoyang Zheng
Guang Lin
AI4CE
46
0
0
01 Feb 2025
Bayesian Optimization with Preference Exploration by Monotonic Neural Network Ensemble
Hanyang Wang
Juergen Branke
Matthias Poloczek
97
0
0
30 Jan 2025
CreINNs: Credal-Set Interval Neural Networks for Uncertainty Estimation in Classification Tasks
Kaizheng Wang
Keivan K1 Shariatmadar
Shireen Kudukkil Manchingal
Fabio Cuzzolin
David Moens
Hans Hallez
UQCV
BDL
87
12
0
28 Jan 2025
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
Julius Berner
Lorenz Richter
Marcin Sendera
Jarrid Rector-Brooks
Nikolay Malkin
OffRL
58
3
0
10 Jan 2025
Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models
Daniela de Albuquerque
John Pearson
DiffM
51
0
0
03 Jan 2025
Improving Pareto Set Learning for Expensive Multi-objective Optimization via Stein Variational Hypernetworks
Minh-Duc Nguyen
Phuong Mai Dinh
Quang-Huy Nguyen
L. P. Hoang
Dung D. Le
46
1
0
23 Dec 2024
Empirical evaluation of normalizing flows in Markov Chain Monte Carlo
David Nabergoj
Erik Štrumbelj
BDL
TPM
40
0
0
22 Dec 2024
Exponential speed up in Monte Carlo sampling through Radial Updates
Johann Ostmeyer
66
2
0
27 Nov 2024
Cautious Optimizers: Improving Training with One Line of Code
Kaizhao Liang
Lizhang Chen
B. Liu
Qiang Liu
ODL
106
5
0
25 Nov 2024
Predicting Emergent Capabilities by Finetuning
Charlie Snell
Eric Wallace
Dan Klein
Sergey Levine
ELM
LRM
75
5
0
25 Nov 2024
Benchmarking Active Learning for NILM
Dhruv Patel
Ankita Kumari Jain
Haikoo Khandor
Xhitij Choudhary
Nipun Batra
66
0
0
24 Nov 2024
Bayesian Calibration of Win Rate Estimation with LLM Evaluators
Yicheng Gao
G. Xu
Zhe Wang
Arman Cohan
38
6
0
07 Nov 2024
Running Markov Chain Monte Carlo on Modern Hardware and Software
Pavel Sountsov
Colin Carroll
Matthew D. Hoffman
BDL
34
2
0
06 Nov 2024
On MCMC mixing under unidentified nonparametric models with an application to survival predictions under transformation models
Chong Zhong
Jin Yang
Junshan Shen
Catherine C. Liu
Zhaohai Li
29
0
0
03 Nov 2024
Hamiltonian Monte Carlo Inference of Marginalized Linear Mixed-Effects Models
Jinlin Lai
Justin Domke
Daniel Sheldon
26
0
0
31 Oct 2024
Flow Matching for Posterior Inference with Simulator Feedback
Benjamin Holzschuh
Nils Thuerey
25
0
0
29 Oct 2024
Bayesian shared parameter joint models for heterogeneous populations
Sida Chen
Danilo Alvares
Marco Palma
Jessica K. Barrett
21
0
0
29 Oct 2024
ATLAS: Adapting Trajectory Lengths and Step-Size for Hamiltonian Monte Carlo
Chirag Modi
23
1
0
28 Oct 2024
Hamiltonian Score Matching and Generative Flows
Peter Holderrieth
Yilun Xu
Tommi Jaakkola
26
0
0
27 Oct 2024
Low-rank Bayesian matrix completion via geodesic Hamiltonian Monte Carlo on Stiefel manifolds
Tiangang Cui
Alex Gorodetsky
16
0
0
27 Oct 2024
1
2
3
4
...
16
17
18
Next