ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.08903
  4. Cited By
GemNet: Universal Directional Graph Neural Networks for Molecules

GemNet: Universal Directional Graph Neural Networks for Molecules

2 June 2021
Johannes Klicpera
Florian Becker
Stephan Günnemann
    AI4CE
ArXivPDFHTML

Papers citing "GemNet: Universal Directional Graph Neural Networks for Molecules"

37 / 237 papers shown
Title
A Bird's-Eye Tutorial of Graph Attention Architectures
A Bird's-Eye Tutorial of Graph Attention Architectures
Kaustubh D. Dhole
Carl Yang
30
1
0
06 Jun 2022
Pre-training via Denoising for Molecular Property Prediction
Pre-training via Denoising for Molecular Property Prediction
Sheheryar Zaidi
Michael Schaarschmidt
James Martens
Hyunjik Kim
Yee Whye Teh
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
Razvan Pascanu
Jonathan Godwin
DiffM
AI4CE
22
121
0
31 May 2022
Graph-level Neural Networks: Current Progress and Future Directions
Graph-level Neural Networks: Current Progress and Future Directions
Ge Zhang
Jia Wu
Jian Yang
Shan Xue
Wenbin Hu
Chuan Zhou
Hao Peng
Quan.Z Sheng
Charu C. Aggarwal
GNN
AI4CE
43
0
0
31 May 2022
Sampling-free Inference for Ab-Initio Potential Energy Surface Networks
Sampling-free Inference for Ab-Initio Potential Energy Surface Networks
Nicholas Gao
Stephan Günnemann
DiffM
44
18
0
30 May 2022
So3krates: Equivariant attention for interactions on arbitrary
  length-scales in molecular systems
So3krates: Equivariant attention for interactions on arbitrary length-scales in molecular systems
J. Frank
Oliver T. Unke
Klaus-Robert Muller
24
44
0
28 May 2022
Representing Polymers as Periodic Graphs with Learned Descriptors for
  Accurate Polymer Property Predictions
Representing Polymers as Periodic Graphs with Learned Descriptors for Accurate Polymer Property Predictions
Evan R. Antoniuk
Peggy Li
B. Kailkhura
A. Hiszpanski
27
31
0
27 May 2022
Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency
  Analysis
Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis
Maciej Besta
Torsten Hoefler
GNN
34
56
0
19 May 2022
Discovering and Explaining the Representation Bottleneck of Graph Neural
  Networks from Multi-order Interactions
Discovering and Explaining the Representation Bottleneck of Graph Neural Networks from Multi-order Interactions
Fang Wu
Siyuan Li
Lirong Wu
Dragomir R. Radev
Stan Z. Li
27
2
0
15 May 2022
The Design Space of E(3)-Equivariant Atom-Centered Interatomic
  Potentials
The Design Space of E(3)-Equivariant Atom-Centered Interatomic Potentials
Ilyes Batatia
Simon L. Batzner
D. P. Kovács
Albert Musaelian
G. Simm
R. Drautz
Christoph Ortner
Boris Kozinsky
Gábor Csányi
29
133
0
13 May 2022
REMuS-GNN: A Rotation-Equivariant Model for Simulating Continuum
  Dynamics
REMuS-GNN: A Rotation-Equivariant Model for Simulating Continuum Dynamics
Mario Lino
Stati Fotiadis
Anil A. Bharath
C. Cantwell
AI4CE
19
3
0
05 May 2022
FINETUNA: Fine-tuning Accelerated Molecular Simulations
FINETUNA: Fine-tuning Accelerated Molecular Simulations
Joseph Musielewicz
Xiaoxiao Wang
Tian Tian
Zachary W. Ulissi
19
32
0
02 May 2022
Simulate Time-integrated Coarse-grained Molecular Dynamics with
  Multi-Scale Graph Networks
Simulate Time-integrated Coarse-grained Molecular Dynamics with Multi-Scale Graph Networks
Xiang Fu
T. Xie
Nathan J. Rebello
B. Olsen
Tommi Jaakkola
AI4CE
30
13
0
21 Apr 2022
Generating 3D Molecules for Target Protein Binding
Generating 3D Molecules for Target Protein Binding
Meng Liu
Youzhi Luo
Kanji Uchino
Koji Maruhashi
Shuiwang Ji
16
112
0
19 Apr 2022
DiffMD: A Geometric Diffusion Model for Molecular Dynamics Simulations
DiffMD: A Geometric Diffusion Model for Molecular Dynamics Simulations
Fang Wu
Stan Z. Li
DiffM
29
31
0
19 Apr 2022
Learning Local Equivariant Representations for Large-Scale Atomistic
  Dynamics
Learning Local Equivariant Representations for Large-Scale Atomistic Dynamics
Albert Musaelian
Simon L. Batzner
A. Johansson
Lixin Sun
Cameron J. Owen
M. Kornbluth
Boris Kozinsky
24
424
0
11 Apr 2022
GemNet-OC: Developing Graph Neural Networks for Large and Diverse
  Molecular Simulation Datasets
GemNet-OC: Developing Graph Neural Networks for Large and Diverse Molecular Simulation Datasets
Johannes Gasteiger
Muhammed Shuaibi
Anuroop Sriram
Stephan Günnemann
Zachary W. Ulissi
C. L. Zitnick
Abhishek Das
AI4TS
MLAU
36
66
0
06 Apr 2022
MolGenSurvey: A Systematic Survey in Machine Learning Models for
  Molecule Design
MolGenSurvey: A Systematic Survey in Machine Learning Models for Molecule Design
Yuanqi Du
Tianfan Fu
Jimeng Sun
Shengchao Liu
AI4CE
31
86
0
28 Mar 2022
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
Christopher Morris
Gaurav Rattan
Sandra Kiefer
Siamak Ravanbakhsh
50
40
0
25 Mar 2022
Towards Training Billion Parameter Graph Neural Networks for Atomic
  Simulations
Towards Training Billion Parameter Graph Neural Networks for Atomic Simulations
Anuroop Sriram
Abhishek Das
Brandon M. Wood
Siddharth Goyal
C. L. Zitnick
AI4CE
33
27
0
18 Mar 2022
Protein Representation Learning by Geometric Structure Pretraining
Protein Representation Learning by Geometric Structure Pretraining
Zuobai Zhang
Minghao Xu
Arian R. Jamasb
Vijil Chenthamarakshan
A. Lozano
Payel Das
Jian Tang
SSL
13
217
0
11 Mar 2022
Spin-Dependent Graph Neural Network Potential for Magnetic Materials
Spin-Dependent Graph Neural Network Potential for Magnetic Materials
Hongyu Yu
Yang Zhong
Liangliang Hong
Changsong Xu
W. Ren
X. Gong
Hongjun Xiang
29
14
0
06 Mar 2022
A Simple and Universal Rotation Equivariant Point-cloud Network
A Simple and Universal Rotation Equivariant Point-cloud Network
Ben Finkelshtein
Chaim Baskin
Haggai Maron
Nadav Dym
3DPC
32
13
0
02 Mar 2022
Scalable Fragment-Based 3D Molecular Design with Reinforcement Learning
Scalable Fragment-Based 3D Molecular Design with Reinforcement Learning
Daniel Flam-Shepherd
A. Zhigalin
A. Aspuru‐Guzik
AI4CE
12
12
0
01 Feb 2022
Crystal Diffusion Variational Autoencoder for Periodic Material
  Generation
Crystal Diffusion Variational Autoencoder for Periodic Material Generation
Tian Xie
Xiang Fu
O. Ganea
Regina Barzilay
Tommi Jaakkola
DiffM
BDL
212
232
0
12 Oct 2021
Learning 3D Representations of Molecular Chirality with Invariance to
  Bond Rotations
Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations
Keir Adams
L. Pattanaik
Connor W. Coley
21
32
0
08 Oct 2021
3D Infomax improves GNNs for Molecular Property Prediction
3D Infomax improves GNNs for Molecular Property Prediction
Hannes Stärk
Dominique Beaini
Gabriele Corso
Prudencio Tossou
Christian Dallago
Stephan Günnemann
Pietro Lió
AI4CE
36
203
0
08 Oct 2021
Geometric and Physical Quantities Improve E(3) Equivariant Message
  Passing
Geometric and Physical Quantities Improve E(3) Equivariant Message Passing
Johannes Brandstetter
Rob D. Hesselink
Elise van der Pol
Erik J. Bekkers
Max Welling
17
229
0
06 Oct 2021
Geometric Algebra Attention Networks for Small Point Clouds
Geometric Algebra Attention Networks for Small Point Clouds
Matthew Spellings
3DPC
50
12
0
05 Oct 2021
Heterogeneous relational message passing networks for molecular dynamics
  simulations
Heterogeneous relational message passing networks for molecular dynamics simulations
Zun Wang
Chong Wang
Sibo Zhao
Yong Xu
Shaogang Hao
Chang-Yu Hsieh
B. Gu
W. Duan
19
25
0
02 Sep 2021
GeoT: A Geometry-aware Transformer for Reliable Molecular Property
  Prediction and Chemically Interpretable Representation Learning
GeoT: A Geometry-aware Transformer for Reliable Molecular Property Prediction and Chemically Interpretable Representation Learning
Bumju Kwak
J. Park
Taewon Kang
Jeonghee Jo
Byunghan Lee
Sungroh Yoon
AI4CE
32
6
0
29 Jun 2021
Scalars are universal: Equivariant machine learning, structured like
  classical physics
Scalars are universal: Equivariant machine learning, structured like classical physics
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
PINN
AI4CE
24
130
0
11 Jun 2021
High-Performance Large-Scale Image Recognition Without Normalization
High-Performance Large-Scale Image Recognition Without Normalization
Andrew Brock
Soham De
Samuel L. Smith
Karen Simonyan
VLM
223
512
0
11 Feb 2021
Spherical Message Passing for 3D Graph Networks
Spherical Message Passing for 3D Graph Networks
Yi Liu
Limei Wang
Meng Liu
Xuan Zhang
Bora Oztekin
Shuiwang Ji
GNN
22
197
0
09 Feb 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
215
1,240
0
08 Jan 2021
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
L. Chanussot
Abhishek Das
Siddharth Goyal
Thibaut Lavril
Muhammed Shuaibi
...
Brandon M. Wood
Junwoong Yoon
Devi Parikh
C. L. Zitnick
Zachary W. Ulissi
232
504
0
20 Oct 2020
TeaNet: universal neural network interatomic potential inspired by
  iterative electronic relaxations
TeaNet: universal neural network interatomic potential inspired by iterative electronic relaxations
So Takamoto
S. Izumi
Ju Li
GNN
26
76
0
02 Dec 2019
A General Theory of Equivariant CNNs on Homogeneous Spaces
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
165
308
0
05 Nov 2018
Previous
12345