ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.08903
  4. Cited By
GemNet: Universal Directional Graph Neural Networks for Molecules

GemNet: Universal Directional Graph Neural Networks for Molecules

2 June 2021
Johannes Klicpera
Florian Becker
Stephan Günnemann
    AI4CE
ArXivPDFHTML

Papers citing "GemNet: Universal Directional Graph Neural Networks for Molecules"

50 / 237 papers shown
Title
MatSciML: A Broad, Multi-Task Benchmark for Solid-State Materials
  Modeling
MatSciML: A Broad, Multi-Task Benchmark for Solid-State Materials Modeling
Kin Long Kelvin Lee
Carmelo Gonzales
Marcel Nassar
Matthew Spellings
Mikhail Galkin
Santiago Miret
32
15
0
12 Sep 2023
3D Denoisers are Good 2D Teachers: Molecular Pretraining via Denoising
  and Cross-Modal Distillation
3D Denoisers are Good 2D Teachers: Molecular Pretraining via Denoising and Cross-Modal Distillation
Sungjun Cho
Dae-Woong Jeong
Sung Moon Ko
Jinwoo Kim
Sehui Han
Seunghoon Hong
Honglak Lee
Moontae Lee
AI4CE
DiffM
32
1
0
08 Sep 2023
PolyGET: Accelerating Polymer Simulations by Accurate and Generalizable
  Forcefield with Equivariant Transformer
PolyGET: Accelerating Polymer Simulations by Accurate and Generalizable Forcefield with Equivariant Transformer
Rui Feng
Huan Tran
Aubrey Toland
Binghong Chen
Qi Zhu
R. Ramprasad
Chao Zhang
11
1
0
01 Sep 2023
May the Force be with You: Unified Force-Centric Pre-Training for 3D
  Molecular Conformations
May the Force be with You: Unified Force-Centric Pre-Training for 3D Molecular Conformations
Rui Feng
Qi Zhu
Huan Tran
Binghong Chen
Aubrey Toland
R. Ramprasad
Chao Zhang
AI4CE
28
9
0
24 Aug 2023
Diffusion probabilistic models enhance variational autoencoder for
  crystal structure generative modeling
Diffusion probabilistic models enhance variational autoencoder for crystal structure generative modeling
T. Pakornchote
Natthaphon Choomphon-anomakhun
Sorrjit Arrerut
C. Atthapak
S. Khamkaeo
Thiparat Chotibut
T. Bovornratanaraks
DiffM
29
17
0
04 Aug 2023
Crystal Structure Prediction by Joint Equivariant Diffusion
Crystal Structure Prediction by Joint Equivariant Diffusion
Rui Jiao
Wen-bing Huang
Peijia Lin
Jiaqi Han
Pin Chen
Yutong Lu
Yang Liu
DiffM
27
60
0
30 Jul 2023
Generalizing Graph ODE for Learning Complex System Dynamics across
  Environments
Generalizing Graph ODE for Learning Complex System Dynamics across Environments
Zijie Huang
Yizhou Sun
Wei Wang
CML
OOD
AI4CE
29
25
0
10 Jul 2023
ChiENN: Embracing Molecular Chirality with Graph Neural Networks
ChiENN: Embracing Molecular Chirality with Graph Neural Networks
Piotr Gaiñski
Michał Koziarski
Jacek Tabor
Marek Śmieja
GNN
34
3
0
05 Jul 2023
Why Deep Models Often cannot Beat Non-deep Counterparts on Molecular
  Property Prediction?
Why Deep Models Often cannot Beat Non-deep Counterparts on Molecular Property Prediction?
Jun-Xiong Xia
Lecheng Zhang
Xiao Zhu
Stan Z. Li
26
3
0
30 Jun 2023
Equivariant flow matching
Equivariant flow matching
Leon Klein
Andreas Krämer
Frank Noé
16
60
0
26 Jun 2023
Accelerating Molecular Graph Neural Networks via Knowledge Distillation
Accelerating Molecular Graph Neural Networks via Knowledge Distillation
Filip Ekstrom Kelvinius
D. Georgiev
Artur P. Toshev
Johannes Gasteiger
26
7
0
26 Jun 2023
StrainTensorNet: Predicting crystal structure elastic properties using
  SE(3)-equivariant graph neural networks
StrainTensorNet: Predicting crystal structure elastic properties using SE(3)-equivariant graph neural networks
T. Pakornchote
A. Ektarawong
Thiparat Chotibut
31
4
0
22 Jun 2023
EquiformerV2: Improved Equivariant Transformer for Scaling to
  Higher-Degree Representations
EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations
Yidong Liao
Brandon M. Wood
Abhishek Das
Tess E. Smidt
26
131
0
21 Jun 2023
Uncertainty Estimation for Molecules: Desiderata and Methods
Uncertainty Estimation for Molecules: Desiderata and Methods
Tom Wollschlager
Nicholas Gao
Bertrand Charpentier
Mohamed Amine Ketata
Stephan Günnemann
21
9
0
20 Jun 2023
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
Haiyang Yu
Meng Liu
Youzhi Luo
A. Strasser
X. Qian
Xiaoning Qian
Shuiwang Ji
15
20
0
15 Jun 2023
Symmetry-Informed Geometric Representation for Molecules, Proteins, and
  Crystalline Materials
Symmetry-Informed Geometric Representation for Molecules, Proteins, and Crystalline Materials
Shengchao Liu
Weitao Du
Yanjing Li
Zhuoxinran Li
Zhiling Zheng
...
Anima Anandkumar
C. Borgs
J. Chayes
Hongyu Guo
Jian Tang
AI4CE
33
20
0
15 Jun 2023
M$^2$Hub: Unlocking the Potential of Machine Learning for Materials
  Discovery
M2^22Hub: Unlocking the Potential of Machine Learning for Materials Discovery
Yuanqi Du
Yingheng Wang
Yin-Hua Huang
Jianan Canal Li
Yanqiao Zhu
T. Xie
Chenru Duan
J. Gregoire
Carla P. Gomes
34
6
0
14 Jun 2023
Automated 3D Pre-Training for Molecular Property Prediction
Automated 3D Pre-Training for Molecular Property Prediction
Xu Wang
Huan Zhao
Weiwei Tu
Quanming Yao
AI4CE
28
35
0
13 Jun 2023
Efficient Approximations of Complete Interatomic Potentials for Crystal
  Property Prediction
Efficient Approximations of Complete Interatomic Potentials for Crystal Property Prediction
Yu-Ching Lin
Keqiang Yan
Youzhi Luo
Yi Liu
Xiaoning Qian
Shuiwang Ji
66
33
0
12 Jun 2023
TensorNet: Cartesian Tensor Representations for Efficient Learning of
  Molecular Potentials
TensorNet: Cartesian Tensor Representations for Efficient Learning of Molecular Potentials
Guillem Simeon
Gianni De Fabritiis
26
45
0
10 Jun 2023
Efficient and Equivariant Graph Networks for Predicting Quantum
  Hamiltonian
Efficient and Equivariant Graph Networks for Predicting Quantum Hamiltonian
Haiyang Yu
Zhao Xu
X. Qian
Xiaoning Qian
Shuiwang Ji
37
24
0
08 Jun 2023
Optimized Crystallographic Graph Generation for Material Science
Optimized Crystallographic Graph Generation for Material Science
Astrid Klipfel
Y. Frégier
A. Sayede
Zied Bouraoui
12
1
0
07 Jun 2023
Unified Model for Crystalline Material Generation
Unified Model for Crystalline Material Generation
Astrid Klipfel
Y. Frégier
A. Sayede
Zied Bouraoui
11
6
0
07 Jun 2023
How does over-squashing affect the power of GNNs?
How does over-squashing affect the power of GNNs?
Francesco Di Giovanni
T. Konstantin Rusch
Michael M. Bronstein
Andreea Deac
Marc Lackenby
Siddhartha Mishra
Petar Velivcković
30
34
0
06 Jun 2023
Machine Learning Force Fields with Data Cost Aware Training
Machine Learning Force Fields with Data Cost Aware Training
Alexander Bukharin
Tianyi Liu
Sheng Wang
Simiao Zuo
Weihao Gao
Wen Yan
Tuo Zhao
AI4CE
29
0
0
05 Jun 2023
Transfer learning for atomistic simulations using GNNs and kernel mean
  embeddings
Transfer learning for atomistic simulations using GNNs and kernel mean embeddings
Johannes Falk
L. Bonati
P. Novelli
Michele Parinello
Massimiliano Pontil
30
4
0
02 Jun 2023
Generalist Equivariant Transformer Towards 3D Molecular Interaction
  Learning
Generalist Equivariant Transformer Towards 3D Molecular Interaction Learning
Xiangzhe Kong
Wen-bing Huang
Yang Liu
22
13
0
02 Jun 2023
DiffPack: A Torsional Diffusion Model for Autoregressive Protein
  Side-Chain Packing
DiffPack: A Torsional Diffusion Model for Autoregressive Protein Side-Chain Packing
Yang Zhang
Zuobai Zhang
Bozitao Zhong
Sanchit Misra
Jian Tang
DiffM
21
33
0
01 Jun 2023
Smooth, exact rotational symmetrization for deep learning on point
  clouds
Smooth, exact rotational symmetrization for deep learning on point clouds
Sergey Pozdnyakov
Michele Ceriotti
3DPC
37
25
0
30 May 2023
From Zero to Turbulence: Generative Modeling for 3D Flow Simulation
From Zero to Turbulence: Generative Modeling for 3D Flow Simulation
Marten Lienen
David Lüdke
Jan Hansen-Palmus
Stephan Günnemann
DiffM
AI4CE
24
23
0
29 May 2023
Learning Lagrangian Fluid Mechanics with E($3$)-Equivariant Graph Neural
  Networks
Learning Lagrangian Fluid Mechanics with E(333)-Equivariant Graph Neural Networks
Artur P. Toshev
Gianluca Galletti
Johannes Brandstetter
Stefan Adami
Nikolaus A. Adams
AI4CE
27
5
0
24 May 2023
Learning Joint 2D & 3D Diffusion Models for Complete Molecule Generation
Learning Joint 2D & 3D Diffusion Models for Complete Molecule Generation
Han Huang
Leilei Sun
Bowen Du
Weifeng Lv
DiffM
24
16
0
21 May 2023
PANNA 2.0: Efficient neural network interatomic potentials and new
  architectures
PANNA 2.0: Efficient neural network interatomic potentials and new architectures
Franco Pellegrini
Ruggero Lot
Yusuf Shaidu
E. Küçükbenli
17
9
0
19 May 2023
Clifford Group Equivariant Neural Networks
Clifford Group Equivariant Neural Networks
David Ruhe
Johannes Brandstetter
Patrick Forré
29
35
0
18 May 2023
Towards Multi-Layered 3D Garments Animation
Towards Multi-Layered 3D Garments Animation
Yidi Shao
Chen Change Loy
Bo Dai
3DH
AI4CE
29
10
0
17 May 2023
Efficient Equivariant Transfer Learning from Pretrained Models
Efficient Equivariant Transfer Learning from Pretrained Models
Sourya Basu
Pulkit Katdare
P. Sattigeri
Vijil Chenthamarakshan
Katherine Driggs Campbell
Payel Das
L. Varshney
40
7
0
17 May 2023
E(n) Equivariant Message Passing Simplicial Networks
E(n) Equivariant Message Passing Simplicial Networks
Floor Eijkelboom
Rob D. Hesselink
Erik J. Bekkers
22
14
0
11 May 2023
3D Molecular Geometry Analysis with 2D Graphs
3D Molecular Geometry Analysis with 2D Graphs
Zhao Xu
Yaochen Xie
Youzhi Luo
Xuan Zhang
Xinyi Xu
Meng Liu
Kaleb Dickerson
Cheng Deng
Maho Nakata
Shuiwang Ji
19
1
0
01 May 2023
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre Duval
Victor Schmidt
A. Garcia
Santiago Miret
Fragkiskos D. Malliaros
Yoshua Bengio
David Rolnick
34
55
0
28 Apr 2023
A new perspective on building efficient and expressive 3D equivariant
  graph neural networks
A new perspective on building efficient and expressive 3D equivariant graph neural networks
Weitao Du
Yuanqi Du
Limei Wang
Dieqiao Feng
Guifeng Wang
Shuiwang Ji
Carla P. Gomes
Zhixin Ma
AI4CE
32
33
0
07 Apr 2023
High Accuracy Uncertainty-Aware Interatomic Force Modeling with
  Equivariant Bayesian Neural Networks
High Accuracy Uncertainty-Aware Interatomic Force Modeling with Equivariant Bayesian Neural Networks
Tim Rensmeyer
Benjamin Craig
D. Kramer
Oliver Niggemann
BDL
41
3
0
05 Apr 2023
GeoTMI:Predicting quantum chemical property with easy-to-obtain geometry
  via positional denoising
GeoTMI:Predicting quantum chemical property with easy-to-obtain geometry via positional denoising
Hyeonsu Kim
Jeheon Woo
Seonghwan Kim
Seokhyun Moon
Jun Hyeong Kim
Woo Youn Kim
AI4CE
42
6
0
28 Mar 2023
Highly Accurate Quantum Chemical Property Prediction with Uni-Mol+
Highly Accurate Quantum Chemical Property Prediction with Uni-Mol+
Shuqi Lu
Zhifeng Gao
Di He
Linfeng Zhang
Guolin Ke
40
24
0
16 Mar 2023
Ewald-based Long-Range Message Passing for Molecular Graphs
Ewald-based Long-Range Message Passing for Molecular Graphs
Arthur Kosmala
Johannes Gasteiger
Nicholas Gao
Stephan Günnemann
71
25
0
08 Mar 2023
DR-Label: Improving GNN Models for Catalysis Systems by Label
  Deconstruction and Reconstruction
DR-Label: Improving GNN Models for Catalysis Systems by Label Deconstruction and Reconstruction
Bo-Lan Wang
Chen Liang
Jiaze Wang
Furui Liu
Shaogang Hao
Dong Li
Jianye Hao
Guangyong Chen
Xiaolong Zou
Pheng-Ann Heng
41
3
0
06 Mar 2023
AERK: Aligned Entropic Reproducing Kernels through Continuous-time
  Quantum Walks
AERK: Aligned Entropic Reproducing Kernels through Continuous-time Quantum Walks
Lixin Cui
Ming Li
Yue Wang
Lu Bai
Edwin R. Hancock
16
0
0
04 Mar 2023
Denoise Pretraining on Nonequilibrium Molecules for Accurate and
  Transferable Neural Potentials
Denoise Pretraining on Nonequilibrium Molecules for Accurate and Transferable Neural Potentials
Yuyang Wang
Chang Xu
Zijie Li
A. Farimani
AAML
AI4CE
21
21
0
03 Mar 2023
Connectivity Optimized Nested Graph Networks for Crystal Structures
Connectivity Optimized Nested Graph Networks for Crystal Structures
R. Ruff
Patrick Reiser
Jan Stuhmer
Pascal Friederich
GNN
28
11
0
27 Feb 2023
MiDi: Mixed Graph and 3D Denoising Diffusion for Molecule Generation
MiDi: Mixed Graph and 3D Denoising Diffusion for Molecule Generation
Clément Vignac
Nagham Osman
Laura Toni
P. Frossard
DiffM
50
50
0
17 Feb 2023
Knowledge-augmented Graph Machine Learning for Drug Discovery: A Survey
  from Precision to Interpretability
Knowledge-augmented Graph Machine Learning for Drug Discovery: A Survey from Precision to Interpretability
Zhiqiang Zhong
A. Barkova
Davide Mottin
24
8
0
16 Feb 2023
Previous
12345
Next