Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.08903
Cited By
GemNet: Universal Directional Graph Neural Networks for Molecules
2 June 2021
Johannes Klicpera
Florian Becker
Stephan Günnemann
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"GemNet: Universal Directional Graph Neural Networks for Molecules"
50 / 237 papers shown
Title
Data efficiency and extrapolation trends in neural network interatomic potentials
Joshua A Vita
Daniel Schwalbe-Koda
36
16
0
12 Feb 2023
Is Distance Matrix Enough for Geometric Deep Learning?
Zian Li
Xiyuan Wang
Yinan Huang
Muhan Zhang
37
17
0
11 Feb 2023
Attending to Graph Transformers
Luis Muller
Mikhail Galkin
Christopher Morris
Ladislav Rampášek
49
86
0
08 Feb 2023
Generalizing Neural Wave Functions
Nicholas Gao
Stephan Günnemann
21
20
0
08 Feb 2023
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Saro Passaro
C. L. Zitnick
3DPC
34
79
0
07 Feb 2023
Learning a Fourier Transform for Linear Relative Positional Encodings in Transformers
K. Choromanski
Shanda Li
Valerii Likhosherstov
Kumar Avinava Dubey
Shengjie Luo
Di He
Yiming Yang
Tamás Sarlós
Thomas Weingarten
Adrian Weller
37
8
0
03 Feb 2023
Molecular Geometry-aware Transformer for accurate 3D Atomic System modeling
Zheng Yuan
Yaoyun Zhang
Chuanqi Tan
Wei Wang
Feiran Huang
Songfang Huang
AI4CE
ViT
24
6
0
02 Feb 2023
Equivariant Message Passing Neural Network for Crystal Material Discovery
Astrid Klipfel
Olivier Peltre
Najwa Harrati
Yael Fregier
A. Sayede
Zied Bouraoui
16
9
0
01 Feb 2023
Complete Neural Networks for Complete Euclidean Graphs
Snir Hordan
Tal Amir
S. Gortler
Nadav Dym
3DPC
29
5
0
31 Jan 2023
On the Expressive Power of Geometric Graph Neural Networks
Chaitanya K. Joshi
Cristian Bodnar
Simon V. Mathis
Taco Cohen
Pietro Liò
55
83
0
23 Jan 2023
Spatial Attention Kinetic Networks with E(n)-Equivariance
Yuanqing Wang
J. Chodera
35
15
0
21 Jan 2023
State of the Art and Potentialities of Graph-level Learning
Zhenyu Yang
Ge Zhang
Jia Wu
Jian Yang
Quan.Z Sheng
...
Charu C. Aggarwal
Hao Peng
Wenbin Hu
Edwin R. Hancock
Pietro Lio'
GNN
AI4CE
35
10
0
14 Jan 2023
QESK: Quantum-based Entropic Subtree Kernels for Graph Classification
Lu Bai
Lixin Cui
Edwin R. Hancock
40
0
0
10 Dec 2022
Capturing long-range interaction with reciprocal space neural network
Hongyu Yu
Liangliang Hong
Shiyou Chen
X. Gong
Hongjun Xiang
29
11
0
30 Nov 2022
Invariance-Aware Randomized Smoothing Certificates
Jan Schuchardt
Stephan Günnemann
AAML
28
5
0
25 Nov 2022
An ensemble of VisNet, Transformer-M, and pretraining models for molecular property prediction in OGB Large-Scale Challenge @ NeurIPS 2022
Yusong Wang
Shaoning Li
Zun Wang
Xinheng He
Bin Shao
Tie-Yan Liu
Tong Wang
AI4CE
20
4
0
23 Nov 2022
Learning Regularized Positional Encoding for Molecular Prediction
Xiang Gao
Weihao Gao
Wen Xiao
Zhirui Wang
Chong Wang
Liang Xiang
AI4CE
27
1
0
23 Nov 2022
Supervised Pretraining for Molecular Force Fields and Properties Prediction
Xiang Gao
Weihao Gao
Wen Xiao
Zhirui Wang
Chong Wang
Liang Xiang
AI4CE
20
8
0
23 Nov 2022
Where Will Players Move Next? Dynamic Graphs and Hierarchical Fusion for Movement Forecasting in Badminton
Kai-Shiang Chang
Wei-Yao Wang
Wen-Chih Peng
AI4TS
31
14
0
22 Nov 2022
PhAST: Physics-Aware, Scalable, and Task-specific GNNs for Accelerated Catalyst Design
Alexandre Duval
Victor Schmidt
Santiago Miret
Yoshua Bengio
Alex Hernández-García
David Rolnick
33
7
0
22 Nov 2022
Fast Uncertainty Estimates in Deep Learning Interatomic Potentials
Albert J. W. Zhu
Simon L. Batzner
Albert Musaelian
Boris Kozinsky
22
45
0
17 Nov 2022
ParticleGrid: Enabling Deep Learning using 3D Representation of Materials
Shehtab Zaman
E. Ferguson
Cécile Pereira
D. Akhiyarov
Mauricio Araya-Polo
Kenneth Chiu
DiffM
AI4CE
21
2
0
15 Nov 2022
Graph Contrastive Learning with Implicit Augmentations
Huidong Liang
Xingjian Du
Bilei Zhu
Zejun Ma
Ke Chen
Junbin Gao
19
29
0
07 Nov 2022
Learning the shape of protein micro-environments with a holographic convolutional neural network
Michael N. Pun
Andrew Ivanov
Quinn Bellamy
Zachary Montague
Colin H. LaMont
P. Bradley
J. Otwinowski
Armita Nourmohammad
16
12
0
05 Nov 2022
HAQJSK: Hierarchical-Aligned Quantum Jensen-Shannon Kernels for Graph Classification
Lu Bai
Lixin Cui
Yue Wang
Ming Li
Edwin R. Hancock
19
41
0
05 Nov 2022
Geometry-Complete Perceptron Networks for 3D Molecular Graphs
Alex Morehead
Jianlin Cheng
GNN
3DV
AI4CE
29
12
0
04 Nov 2022
The Open MatSci ML Toolkit: A Flexible Framework for Machine Learning in Materials Science
Santiago Miret
Kin Long Kelvin Lee
Carmelo Gonzales
Marcel Nassar
Matthew Spellings
38
19
0
31 Oct 2022
Injecting Domain Knowledge from Empirical Interatomic Potentials to Neural Networks for Predicting Material Properties
Zeren Shui
Daniel S. Karls
Mingjian Wen
Ilia Nikiforov
E. Tadmor
George Karypis
46
7
0
14 Oct 2022
Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations
Xiang Fu
Zhenghao Wu
Wujie Wang
T. Xie
S. Keten
Rafael Gómez-Bombarelli
Tommi Jaakkola
32
136
0
13 Oct 2022
Hyperactive Learning (HAL) for Data-Driven Interatomic Potentials
Cas van der Oord
Matthias Sachs
D. P. Kovács
Christoph Ortner
Gábor Csányi
41
64
0
09 Oct 2022
Improving Molecular Pretraining with Complementary Featurizations
Yanqiao Zhu
Dingshuo Chen
Yuanqi Du
Yingze Wang
Qiang Liu
Shu Wu
AI4CE
36
6
0
29 Sep 2022
Machine learning and invariant theory
Ben Blum-Smith
Soledad Villar
AI4CE
36
16
0
29 Sep 2022
Learned Force Fields Are Ready For Ground State Catalyst Discovery
Michael Schaarschmidt
M. Rivière
A. Ganose
J. Spencer
Alex Gaunt
J. Kirkpatrick
Simon Axelrod
Peter W. Battaglia
Jonathan Godwin
23
10
0
26 Sep 2022
Periodic Graph Transformers for Crystal Material Property Prediction
Keqiang Yan
Yi Liu
Yu-Ching Lin
Shuiwang Ji
AI4TS
88
84
0
23 Sep 2022
Multi-Task Mixture Density Graph Neural Networks for Predicting Cu-based Single-Atom Alloy Catalysts for CO2 Reduction Reaction
Chen Liang
Bo-Lan Wang
Shaogang Hao
Guangyong Chen
Pheng-Ann Heng
Xiaolong Zou
50
1
0
15 Sep 2022
Graph Neural Networks for Molecules
Yuyang Wang
Zijie Li
A. Farimani
GNN
AI4CE
45
20
0
12 Sep 2022
Domain-informed graph neural networks: a quantum chemistry case study
Jay Morgan
A. Paiement
C. Klinke
GNN
32
4
0
25 Aug 2022
DPA-1: Pretraining of Attention-based Deep Potential Model for Molecular Simulation
Duoduo Zhang
Hangrui Bi
Fu-Zhi Dai
Wanrun Jiang
Linfeng Zhang
Han Wang
AI4CE
37
37
0
17 Aug 2022
Graph neural networks for materials science and chemistry
Patrick Reiser
Marlen Neubert
André Eberhard
Luca Torresi
Chen Zhou
...
Houssam Metni
Clint van Hoesel
Henrik Schopmans
T. Sommer
Pascal Friederich
GNN
AI4CE
50
373
0
05 Aug 2022
Graph Neural Network with Local Frame for Molecular Potential Energy Surface
Xiyuan Wang
Muhan Zhang
38
9
0
01 Aug 2022
Boosting Heterogeneous Catalyst Discovery by Structurally Constrained Deep Learning Models
A. Korovin
Innokentiy S. Humonen
A. Samtsevich
R. Eremin
Artem I. Vasilyev
V. Lazarev
S. Budennyy
GNN
14
5
0
11 Jul 2022
Graph-based Molecular Representation Learning
Zhichun Guo
Kehan Guo
B. Nan
Yijun Tian
Roshni G. Iyer
...
Olaf Wiest
Xiangliang Zhang
Wei Wang
Chuxu Zhang
Nitesh V. Chawla
AI4CE
22
60
0
08 Jul 2022
Spherical Channels for Modeling Atomic Interactions
C. L. Zitnick
Abhishek Das
Adeesh Kolluru
Janice Lan
Muhammed Shuaibi
Anuroop Sriram
Zachary W. Ulissi
Brandon M. Wood
79
58
0
29 Jun 2022
Molecular Geometry Pretraining with SE(3)-Invariant Denoising Distance Matching
Shengchao Liu
Hongyu Guo
Jian Tang
23
77
0
27 Jun 2022
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs
Yi-Lun Liao
Tess E. Smidt
83
216
0
23 Jun 2022
Ordered Subgraph Aggregation Networks
Chao Qian
Gaurav Rattan
Floris Geerts
Christopher Morris
Mathias Niepert
41
57
0
22 Jun 2022
Cluster Generation via Deep Energy-Based Model
A. Y. Artsukevich
S. Lepeshkin
29
0
0
17 Jun 2022
The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysts
Richard Tran
Janice Lan
Muhammed Shuaibi
Brandon M. Wood
Siddharth Goyal
...
Jehad Abed
Oleksandr Voznyy
Edward H. Sargent
Zachary W. Ulissi
C. L. Zitnick
28
173
0
17 Jun 2022
ComENet: Towards Complete and Efficient Message Passing for 3D Molecular Graphs
Limei Wang
Yi Liu
Yu-Ching Lin
Hao Liu
Shuiwang Ji
GNN
41
89
0
17 Jun 2022
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Ilyes Batatia
D. P. Kovács
G. Simm
Christoph Ortner
Gábor Csányi
44
441
0
15 Jun 2022
Previous
1
2
3
4
5
Next