Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.08903
Cited By
GemNet: Universal Directional Graph Neural Networks for Molecules
2 June 2021
Johannes Klicpera
Florian Becker
Stephan Günnemann
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"GemNet: Universal Directional Graph Neural Networks for Molecules"
50 / 237 papers shown
Title
Space Group Equivariant Crystal Diffusion
Rees Chang
Angela Pak
Alex Guerra
Ni Zhan
Nick Richardson
Elif Ertekin
Ryan P. Adams
14
0
0
16 May 2025
EDBench: Large-Scale Electron Density Data for Molecular Modeling
Hongxin Xiang
Ke Li
M. Liu
Zhixiang Cheng
Bin Yao
Wenjie Du
Jun-Xiong Xia
Li Zeng
Xin Jin
Xiangxiang Zeng
19
0
0
14 May 2025
Towards Faster and More Compact Foundation Models for Molecular Property Prediction
Yasir Ghunaim
Andrés Villa
Gergo Ignacz
Gyorgy Szekely
Motasem Alfarra
Bernard Ghanem
AI4CE
90
0
0
28 Apr 2025
Optimizing Data Distribution and Kernel Performance for Efficient Training of Chemistry Foundation Models: A Case Study with MACE
J. Firoz
Franco Pellegrini
Mario Geiger
Darren J. Hsu
Jenna A. Bilbrey
...
Chris Mundy
Gábor Csányi
Justin S. Smith
Ponnuswamy Sadayappan
Sutanay Choudhury
26
0
0
14 Apr 2025
MatterTune: An Integrated, User-Friendly Platform for Fine-Tuning Atomistic Foundation Models to Accelerate Materials Simulation and Discovery
Lingyu Kong
Nima Shoghi
Guoxiang Hu
Pan Li
Victor Fung
31
0
0
14 Apr 2025
Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Alexander Windmann
Henrik S. Steude
Daniel Boschmann
Oliver Niggemann
OOD
AI4TS
33
0
0
04 Apr 2025
Beyond Atoms: Enhancing Molecular Pretrained Representations with 3D Space Modeling
Shuqi Lu
Xiaohong Ji
Bohang Zhang
Lin Yao
Siyuan Liu
Zhifeng Gao
Linfeng Zhang
Guolin Ke
AI4CE
46
1
0
13 Mar 2025
How simple can you go? An off-the-shelf transformer approach to molecular dynamics
Max Eissler
Tim Korjakow
Stefan Ganscha
Oliver T. Unke
Klaus-Robert Müller
Stefan Gugler
60
1
0
03 Mar 2025
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Yunyang Li
Zaishuo Xia
Lin Huang
Xinran Wei
Han Yang
...
Zun Wang
Chang-Shu Liu
Jia Zhang
Bin Shao
Mark B. Gerstein
77
0
0
26 Feb 2025
A Materials Foundation Model via Hybrid Invariant-Equivariant Architectures
Keqiang Yan
Montgomery Bohde
Andrii Kryvenko
Ziyu Xiang
Kaiji Zhao
...
Jianwen Xie
Raymundo Arróyave
X. Qian
Xiaofeng Qian
Shuiwang Ji
47
0
0
25 Feb 2025
Improving the Stability of GNN Force Field Models by Reducing Feature Correlation
Y. Zeng
Wenlong He
Ihor Vasyltsov
Jiaxin Wei
Ying Zhang
Lin Chen
Yuehua Dai
39
0
0
18 Feb 2025
MatterChat: A Multi-Modal LLM for Material Science
Yingheng Tang
Wenbin Xu
Jie Cao
Jianzhu Ma
Weilu Gao
Steve Farrell
Benjamin Erichson
Michael W. Mahoney
Andy Nonaka
113
3
0
18 Feb 2025
A Periodic Bayesian Flow for Material Generation
Hanlin Wu
Yuxuan Song
Jingjing Gong
Ziyao Cao
Y. Ouyang
Jianbing Zhang
Hao Zhou
Wei-Ying Ma
Jingjing Liu
DiffM
69
2
0
04 Feb 2025
FastCHGNet: Training one Universal Interatomic Potential to 1.5 Hours with 32 GPUs
Yuanchang Zhou
Siyu Hu
Chen Wang
Lin-Wang Wang
Guangming Tan
Weile Jia
AI4CE
GNN
50
0
0
30 Dec 2024
The dark side of the forces: assessing non-conservative force models for atomistic machine learning
Filippo Bigi
Marcel F. Langer
Michele Ceriotti
AI4CE
91
7
0
16 Dec 2024
A Dynamical Systems-Inspired Pruning Strategy for Addressing Oversmoothing in Graph Neural Networks
Biswadeep Chakraborty
H. Kumar
Saibal Mukhopadhyay
82
1
0
10 Dec 2024
Graph Neural Networks Are More Than Filters: Revisiting and Benchmarking from A Spectral Perspective
Yushun Dong
Patrick Soga
Yinhan He
Song Wang
Jundong Li
94
0
0
10 Dec 2024
OpenQDC: Open Quantum Data Commons
Cristian Gabellini
Nikhil Shenoy
Stephan Thaler
Semih Cantürk
Daniel McNeela
Dominique Beaini
Michael Bronstein
Prudencio Tossou
AI4CE
80
1
0
29 Nov 2024
Equivariant Graph Network Approximations of High-Degree Polynomials for Force Field Prediction
Zhao Xu
Haiyang Yu
Montgomery Bohde
Shuiwang Ji
40
0
0
06 Nov 2024
Bridging Geometric States via Geometric Diffusion Bridge
Shengjie Luo
Yixian Xu
Di He
Shuxin Zheng
Tie-Yan Liu
Liwei Wang
37
0
0
31 Oct 2024
The Importance of Being Scalable: Improving the Speed and Accuracy of Neural Network Interatomic Potentials Across Chemical Domains
Eric Qu
Aditi S. Krishnapriyan
LRM
30
10
0
31 Oct 2024
Are High-Degree Representations Really Unnecessary in Equivariant Graph Neural Networks?
Jiacheng Cen
Anyi Li
Ning Lin
Yuxiang Ren
Zihe Wang
Wenbing Huang
43
2
0
15 Oct 2024
KA-GNN: Kolmogorov-Arnold Graph Neural Networks for Molecular Property Prediction
Longlong Li
Yipeng Zhang
Guanghui Wang
Kelin Xia
31
3
0
15 Oct 2024
Physical Consistency Bridges Heterogeneous Data in Molecular Multi-Task Learning
Yuxuan Ren
Dihan Zheng
Chang-Shu Liu
Peiran Jin
Yu Shi
Lin Huang
Jiyan He
Shengjie Luo
Tao Qin
Tie-Yan Liu
AI4CE
32
1
0
14 Oct 2024
Towards Stable, Globally Expressive Graph Representations with Laplacian Eigenvectors
Junru Zhou
Cai Zhou
Xiyuan Wang
Pan Li
Muhan Zhang
37
0
0
13 Oct 2024
Learning Equivariant Non-Local Electron Density Functionals
Nicholas Gao
Eike Eberhard
Stephan Günnemann
28
1
0
10 Oct 2024
Neural P
3
^3
3
M: A Long-Range Interaction Modeling Enhancer for Geometric GNNs
Yusong Wang
Chaoran Cheng
Shaoning Li
Yuxuan Ren
Bin Shao
Ge Liu
Pheng-Ann Heng
Nanning Zheng
AI4CE
30
3
0
26 Sep 2024
Hydrogen under Pressure as a Benchmark for Machine-Learning Interatomic Potentials
Thomas Bischoff
Bastian Jäckl
Matthias Rupp
24
2
0
20 Sep 2024
SpinMultiNet: Neural Network Potential Incorporating Spin Degrees of Freedom with Multi-Task Learning
Koki Ueno
Satoru Ohuchi
Kazuhide Ichikawa
Kei Amii
Kensuke Wakasugi
48
0
0
05 Sep 2024
Distribution Learning for Molecular Regression
Nima Shoghi
Pooya Shoghi
Anuroop Sriram
Abhishek Das
OOD
27
0
0
30 Jul 2024
Enhancing material property prediction with ensemble deep graph convolutional networks
Chowdhury Mohammad Abid Rahman
Ghadendra B. Bhandari
Nasser M. Nasrabadi
Aldo H. Romero
P. Gyawali
AI4CE
48
3
0
26 Jul 2024
FreeCG: Free the Design Space of Clebsch-Gordan Transform for Machine Learning Force Fields
Shihao Shao
Haoran Geng
Zun Wang
Qinghua Cui
3DV
40
0
0
02 Jul 2024
On the Expressive Power of Sparse Geometric MPNNs
Yonatan Sverdlov
Nadav Dym
45
1
0
02 Jul 2024
MuGSI: Distilling GNNs with Multi-Granularity Structural Information for Graph Classification
Tianjun Yao
Jiaqi Sun
Defu Cao
Kun Zhang
Guangyi Chen
37
5
0
28 Jun 2024
Improving the Expressiveness of
K
K
K
-hop Message-Passing GNNs by Injecting Contextualized Substructure Information
Tianjun Yao
Yiongxu Wang
Kun Zhang
Shangsong Liang
38
11
0
27 Jun 2024
GeoMFormer: A General Architecture for Geometric Molecular Representation Learning
Tianlang Chen
Shengjie Luo
Di He
Shuxin Zheng
Tie-Yan Liu
Liwei Wang
AI4CE
38
5
0
24 Jun 2024
Transferable Boltzmann Generators
Leon Klein
Frank Noé
46
12
0
20 Jun 2024
A Unified Framework for Combinatorial Optimization Based on Graph Neural Networks
Yaochu Jin
Xueming Yan
Shiqing Liu
Xiangyu Wang
49
3
0
19 Jun 2024
Equivariance via Minimal Frame Averaging for More Symmetries and Efficiency
Yuchao Lin
Jacob Helwig
Shurui Gui
Shuiwang Ji
42
7
0
11 Jun 2024
Grounding Continuous Representations in Geometry: Equivariant Neural Fields
David R. Wessels
David M. Knigge
Samuele Papa
Riccardo Valperga
Sharvaree P. Vadgama
E. Gavves
Erik J. Bekkers
47
7
0
09 Jun 2024
Infusing Self-Consistency into Density Functional Theory Hamiltonian Prediction via Deep Equilibrium Models
Zun Wang
Chang-Shu Liu
Nianlong Zou
He Zhang
Xinran Wei
Lin Huang
Lijun Wu
Bin Shao
38
1
0
06 Jun 2024
E(n) Equivariant Message Passing Cellular Networks
Veljko Kovač
Erik J. Bekkers
Pietro Lio'
Floor Eijkelboom
39
1
0
05 Jun 2024
In-Context Learning of Physical Properties: Few-Shot Adaptation to Out-of-Distribution Molecular Graphs
Grzegorz Kaszuba
Amirhossein D. Naghdi
Dario Massa
Stefanos Papanikolaou
Andrzej Jaszkiewicz
Piotr Sankowski
AI4CE
OODD
40
0
0
03 Jun 2024
Neural Polarization: Toward Electron Density for Molecules by Extending Equivariant Networks
Bumju Kwak
Jeonghee Jo
53
0
0
01 Jun 2024
Explainable Data-driven Modeling of Adsorption Energy in Heterogeneous Catalysis
Tirtha Vinchurkar
Janghoon Ock
A. Farimani
32
1
0
30 May 2024
A Recipe for Charge Density Prediction
Xiang Fu
Andrew S. Rosen
Kyle Bystrom
Rui Wang
Albert Musaelian
Boris Kozinsky
Tess E. Smidt
Tommi Jaakkola
50
5
0
29 May 2024
SE3Set: Harnessing equivariant hypergraph neural networks for molecular representation learning
Hongfei Wu
Lijun Wu
Guoqing Liu
Zhirong Liu
Bin Shao
Zun Wang
43
1
0
26 May 2024
Higher-Rank Irreducible Cartesian Tensors for Equivariant Message Passing
Viktor Zaverkin
Francesco Alesiani
Takashi Maruyama
Federico Errica
Henrik Christiansen
Makoto Takamoto
Nicolas Weber
Mathias Niepert
46
5
0
23 May 2024
Improved Canonicalization for Model Agnostic Equivariance
Siba Smarak Panigrahi
Arnab Kumar Mondal
42
3
0
23 May 2024
CaFA: Global Weather Forecasting with Factorized Attention on Sphere
Zijie Li
Anthony Y. Zhou
Saurabh Patil
A. Farimani
42
6
0
12 May 2024
1
2
3
4
5
Next