ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.08903
  4. Cited By
GemNet: Universal Directional Graph Neural Networks for Molecules

GemNet: Universal Directional Graph Neural Networks for Molecules

2 June 2021
Johannes Klicpera
Florian Becker
Stephan Günnemann
    AI4CE
ArXivPDFHTML

Papers citing "GemNet: Universal Directional Graph Neural Networks for Molecules"

50 / 237 papers shown
Title
Space Group Equivariant Crystal Diffusion
Space Group Equivariant Crystal Diffusion
Rees Chang
Angela Pak
Alex Guerra
Ni Zhan
Nick Richardson
Elif Ertekin
Ryan P. Adams
14
0
0
16 May 2025
EDBench: Large-Scale Electron Density Data for Molecular Modeling
EDBench: Large-Scale Electron Density Data for Molecular Modeling
Hongxin Xiang
Ke Li
M. Liu
Zhixiang Cheng
Bin Yao
Wenjie Du
Jun-Xiong Xia
Li Zeng
Xin Jin
Xiangxiang Zeng
19
0
0
14 May 2025
Towards Faster and More Compact Foundation Models for Molecular Property Prediction
Towards Faster and More Compact Foundation Models for Molecular Property Prediction
Yasir Ghunaim
Andrés Villa
Gergo Ignacz
Gyorgy Szekely
Motasem Alfarra
Bernard Ghanem
AI4CE
90
0
0
28 Apr 2025
Optimizing Data Distribution and Kernel Performance for Efficient Training of Chemistry Foundation Models: A Case Study with MACE
Optimizing Data Distribution and Kernel Performance for Efficient Training of Chemistry Foundation Models: A Case Study with MACE
J. Firoz
Franco Pellegrini
Mario Geiger
Darren J. Hsu
Jenna A. Bilbrey
...
Chris Mundy
Gábor Csányi
Justin S. Smith
Ponnuswamy Sadayappan
Sutanay Choudhury
26
0
0
14 Apr 2025
MatterTune: An Integrated, User-Friendly Platform for Fine-Tuning Atomistic Foundation Models to Accelerate Materials Simulation and Discovery
MatterTune: An Integrated, User-Friendly Platform for Fine-Tuning Atomistic Foundation Models to Accelerate Materials Simulation and Discovery
Lingyu Kong
Nima Shoghi
Guoxiang Hu
Pan Li
Victor Fung
31
0
0
14 Apr 2025
Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Alexander Windmann
Henrik S. Steude
Daniel Boschmann
Oliver Niggemann
OOD
AI4TS
33
0
0
04 Apr 2025
Beyond Atoms: Enhancing Molecular Pretrained Representations with 3D Space Modeling
Beyond Atoms: Enhancing Molecular Pretrained Representations with 3D Space Modeling
Shuqi Lu
Xiaohong Ji
Bohang Zhang
Lin Yao
Siyuan Liu
Zhifeng Gao
Linfeng Zhang
Guolin Ke
AI4CE
46
1
0
13 Mar 2025
How simple can you go? An off-the-shelf transformer approach to molecular dynamics
Max Eissler
Tim Korjakow
Stefan Ganscha
Oliver T. Unke
Klaus-Robert Müller
Stefan Gugler
60
1
0
03 Mar 2025
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Yunyang Li
Zaishuo Xia
Lin Huang
Xinran Wei
Han Yang
...
Zun Wang
Chang-Shu Liu
Jia Zhang
Bin Shao
Mark B. Gerstein
77
0
0
26 Feb 2025
A Materials Foundation Model via Hybrid Invariant-Equivariant Architectures
Keqiang Yan
Montgomery Bohde
Andrii Kryvenko
Ziyu Xiang
Kaiji Zhao
...
Jianwen Xie
Raymundo Arróyave
X. Qian
Xiaofeng Qian
Shuiwang Ji
47
0
0
25 Feb 2025
Improving the Stability of GNN Force Field Models by Reducing Feature Correlation
Improving the Stability of GNN Force Field Models by Reducing Feature Correlation
Y. Zeng
Wenlong He
Ihor Vasyltsov
Jiaxin Wei
Ying Zhang
Lin Chen
Yuehua Dai
39
0
0
18 Feb 2025
MatterChat: A Multi-Modal LLM for Material Science
MatterChat: A Multi-Modal LLM for Material Science
Yingheng Tang
Wenbin Xu
Jie Cao
Jianzhu Ma
Weilu Gao
Steve Farrell
Benjamin Erichson
Michael W. Mahoney
Andy Nonaka
113
3
0
18 Feb 2025
A Periodic Bayesian Flow for Material Generation
A Periodic Bayesian Flow for Material Generation
Hanlin Wu
Yuxuan Song
Jingjing Gong
Ziyao Cao
Y. Ouyang
Jianbing Zhang
Hao Zhou
Wei-Ying Ma
Jingjing Liu
DiffM
69
2
0
04 Feb 2025
FastCHGNet: Training one Universal Interatomic Potential to 1.5 Hours with 32 GPUs
FastCHGNet: Training one Universal Interatomic Potential to 1.5 Hours with 32 GPUs
Yuanchang Zhou
Siyu Hu
Chen Wang
Lin-Wang Wang
Guangming Tan
Weile Jia
AI4CE
GNN
50
0
0
30 Dec 2024
The dark side of the forces: assessing non-conservative force models for atomistic machine learning
The dark side of the forces: assessing non-conservative force models for atomistic machine learning
Filippo Bigi
Marcel F. Langer
Michele Ceriotti
AI4CE
91
7
0
16 Dec 2024
A Dynamical Systems-Inspired Pruning Strategy for Addressing
  Oversmoothing in Graph Neural Networks
A Dynamical Systems-Inspired Pruning Strategy for Addressing Oversmoothing in Graph Neural Networks
Biswadeep Chakraborty
H. Kumar
Saibal Mukhopadhyay
82
1
0
10 Dec 2024
Graph Neural Networks Are More Than Filters: Revisiting and Benchmarking
  from A Spectral Perspective
Graph Neural Networks Are More Than Filters: Revisiting and Benchmarking from A Spectral Perspective
Yushun Dong
Patrick Soga
Yinhan He
Song Wang
Jundong Li
94
0
0
10 Dec 2024
OpenQDC: Open Quantum Data Commons
OpenQDC: Open Quantum Data Commons
Cristian Gabellini
Nikhil Shenoy
Stephan Thaler
Semih Cantürk
Daniel McNeela
Dominique Beaini
Michael Bronstein
Prudencio Tossou
AI4CE
80
1
0
29 Nov 2024
Equivariant Graph Network Approximations of High-Degree Polynomials for
  Force Field Prediction
Equivariant Graph Network Approximations of High-Degree Polynomials for Force Field Prediction
Zhao Xu
Haiyang Yu
Montgomery Bohde
Shuiwang Ji
40
0
0
06 Nov 2024
Bridging Geometric States via Geometric Diffusion Bridge
Bridging Geometric States via Geometric Diffusion Bridge
Shengjie Luo
Yixian Xu
Di He
Shuxin Zheng
Tie-Yan Liu
Liwei Wang
37
0
0
31 Oct 2024
The Importance of Being Scalable: Improving the Speed and Accuracy of
  Neural Network Interatomic Potentials Across Chemical Domains
The Importance of Being Scalable: Improving the Speed and Accuracy of Neural Network Interatomic Potentials Across Chemical Domains
Eric Qu
Aditi S. Krishnapriyan
LRM
30
10
0
31 Oct 2024
Are High-Degree Representations Really Unnecessary in Equivariant Graph
  Neural Networks?
Are High-Degree Representations Really Unnecessary in Equivariant Graph Neural Networks?
Jiacheng Cen
Anyi Li
Ning Lin
Yuxiang Ren
Zihe Wang
Wenbing Huang
43
2
0
15 Oct 2024
KA-GNN: Kolmogorov-Arnold Graph Neural Networks for Molecular Property
  Prediction
KA-GNN: Kolmogorov-Arnold Graph Neural Networks for Molecular Property Prediction
Longlong Li
Yipeng Zhang
Guanghui Wang
Kelin Xia
31
3
0
15 Oct 2024
Physical Consistency Bridges Heterogeneous Data in Molecular Multi-Task
  Learning
Physical Consistency Bridges Heterogeneous Data in Molecular Multi-Task Learning
Yuxuan Ren
Dihan Zheng
Chang-Shu Liu
Peiran Jin
Yu Shi
Lin Huang
Jiyan He
Shengjie Luo
Tao Qin
Tie-Yan Liu
AI4CE
32
1
0
14 Oct 2024
Towards Stable, Globally Expressive Graph Representations with Laplacian
  Eigenvectors
Towards Stable, Globally Expressive Graph Representations with Laplacian Eigenvectors
Junru Zhou
Cai Zhou
Xiyuan Wang
Pan Li
Muhan Zhang
37
0
0
13 Oct 2024
Learning Equivariant Non-Local Electron Density Functionals
Learning Equivariant Non-Local Electron Density Functionals
Nicholas Gao
Eike Eberhard
Stephan Günnemann
28
1
0
10 Oct 2024
Neural P$^3$M: A Long-Range Interaction Modeling Enhancer for Geometric
  GNNs
Neural P3^33M: A Long-Range Interaction Modeling Enhancer for Geometric GNNs
Yusong Wang
Chaoran Cheng
Shaoning Li
Yuxuan Ren
Bin Shao
Ge Liu
Pheng-Ann Heng
Nanning Zheng
AI4CE
30
3
0
26 Sep 2024
Hydrogen under Pressure as a Benchmark for Machine-Learning Interatomic
  Potentials
Hydrogen under Pressure as a Benchmark for Machine-Learning Interatomic Potentials
Thomas Bischoff
Bastian Jäckl
Matthias Rupp
24
2
0
20 Sep 2024
SpinMultiNet: Neural Network Potential Incorporating Spin Degrees of
  Freedom with Multi-Task Learning
SpinMultiNet: Neural Network Potential Incorporating Spin Degrees of Freedom with Multi-Task Learning
Koki Ueno
Satoru Ohuchi
Kazuhide Ichikawa
Kei Amii
Kensuke Wakasugi
48
0
0
05 Sep 2024
Distribution Learning for Molecular Regression
Distribution Learning for Molecular Regression
Nima Shoghi
Pooya Shoghi
Anuroop Sriram
Abhishek Das
OOD
27
0
0
30 Jul 2024
Enhancing material property prediction with ensemble deep graph
  convolutional networks
Enhancing material property prediction with ensemble deep graph convolutional networks
Chowdhury Mohammad Abid Rahman
Ghadendra B. Bhandari
Nasser M. Nasrabadi
Aldo H. Romero
P. Gyawali
AI4CE
48
3
0
26 Jul 2024
FreeCG: Free the Design Space of Clebsch-Gordan Transform for Machine
  Learning Force Fields
FreeCG: Free the Design Space of Clebsch-Gordan Transform for Machine Learning Force Fields
Shihao Shao
Haoran Geng
Zun Wang
Qinghua Cui
3DV
40
0
0
02 Jul 2024
On the Expressive Power of Sparse Geometric MPNNs
On the Expressive Power of Sparse Geometric MPNNs
Yonatan Sverdlov
Nadav Dym
45
1
0
02 Jul 2024
MuGSI: Distilling GNNs with Multi-Granularity Structural Information for
  Graph Classification
MuGSI: Distilling GNNs with Multi-Granularity Structural Information for Graph Classification
Tianjun Yao
Jiaqi Sun
Defu Cao
Kun Zhang
Guangyi Chen
37
5
0
28 Jun 2024
Improving the Expressiveness of $K$-hop Message-Passing GNNs by
  Injecting Contextualized Substructure Information
Improving the Expressiveness of KKK-hop Message-Passing GNNs by Injecting Contextualized Substructure Information
Tianjun Yao
Yiongxu Wang
Kun Zhang
Shangsong Liang
38
11
0
27 Jun 2024
GeoMFormer: A General Architecture for Geometric Molecular
  Representation Learning
GeoMFormer: A General Architecture for Geometric Molecular Representation Learning
Tianlang Chen
Shengjie Luo
Di He
Shuxin Zheng
Tie-Yan Liu
Liwei Wang
AI4CE
38
5
0
24 Jun 2024
Transferable Boltzmann Generators
Transferable Boltzmann Generators
Leon Klein
Frank Noé
46
12
0
20 Jun 2024
A Unified Framework for Combinatorial Optimization Based on Graph Neural
  Networks
A Unified Framework for Combinatorial Optimization Based on Graph Neural Networks
Yaochu Jin
Xueming Yan
Shiqing Liu
Xiangyu Wang
49
3
0
19 Jun 2024
Equivariance via Minimal Frame Averaging for More Symmetries and
  Efficiency
Equivariance via Minimal Frame Averaging for More Symmetries and Efficiency
Yuchao Lin
Jacob Helwig
Shurui Gui
Shuiwang Ji
42
7
0
11 Jun 2024
Grounding Continuous Representations in Geometry: Equivariant Neural Fields
Grounding Continuous Representations in Geometry: Equivariant Neural Fields
David R. Wessels
David M. Knigge
Samuele Papa
Riccardo Valperga
Sharvaree P. Vadgama
E. Gavves
Erik J. Bekkers
47
7
0
09 Jun 2024
Infusing Self-Consistency into Density Functional Theory Hamiltonian
  Prediction via Deep Equilibrium Models
Infusing Self-Consistency into Density Functional Theory Hamiltonian Prediction via Deep Equilibrium Models
Zun Wang
Chang-Shu Liu
Nianlong Zou
He Zhang
Xinran Wei
Lin Huang
Lijun Wu
Bin Shao
38
1
0
06 Jun 2024
E(n) Equivariant Message Passing Cellular Networks
E(n) Equivariant Message Passing Cellular Networks
Veljko Kovač
Erik J. Bekkers
Pietro Lio'
Floor Eijkelboom
39
1
0
05 Jun 2024
In-Context Learning of Physical Properties: Few-Shot Adaptation to
  Out-of-Distribution Molecular Graphs
In-Context Learning of Physical Properties: Few-Shot Adaptation to Out-of-Distribution Molecular Graphs
Grzegorz Kaszuba
Amirhossein D. Naghdi
Dario Massa
Stefanos Papanikolaou
Andrzej Jaszkiewicz
Piotr Sankowski
AI4CE
OODD
40
0
0
03 Jun 2024
Neural Polarization: Toward Electron Density for Molecules by Extending
  Equivariant Networks
Neural Polarization: Toward Electron Density for Molecules by Extending Equivariant Networks
Bumju Kwak
Jeonghee Jo
53
0
0
01 Jun 2024
Explainable Data-driven Modeling of Adsorption Energy in Heterogeneous
  Catalysis
Explainable Data-driven Modeling of Adsorption Energy in Heterogeneous Catalysis
Tirtha Vinchurkar
Janghoon Ock
A. Farimani
32
1
0
30 May 2024
A Recipe for Charge Density Prediction
A Recipe for Charge Density Prediction
Xiang Fu
Andrew S. Rosen
Kyle Bystrom
Rui Wang
Albert Musaelian
Boris Kozinsky
Tess E. Smidt
Tommi Jaakkola
50
5
0
29 May 2024
SE3Set: Harnessing equivariant hypergraph neural networks for molecular
  representation learning
SE3Set: Harnessing equivariant hypergraph neural networks for molecular representation learning
Hongfei Wu
Lijun Wu
Guoqing Liu
Zhirong Liu
Bin Shao
Zun Wang
43
1
0
26 May 2024
Higher-Rank Irreducible Cartesian Tensors for Equivariant Message
  Passing
Higher-Rank Irreducible Cartesian Tensors for Equivariant Message Passing
Viktor Zaverkin
Francesco Alesiani
Takashi Maruyama
Federico Errica
Henrik Christiansen
Makoto Takamoto
Nicolas Weber
Mathias Niepert
46
5
0
23 May 2024
Improved Canonicalization for Model Agnostic Equivariance
Improved Canonicalization for Model Agnostic Equivariance
Siba Smarak Panigrahi
Arnab Kumar Mondal
42
3
0
23 May 2024
CaFA: Global Weather Forecasting with Factorized Attention on Sphere
CaFA: Global Weather Forecasting with Factorized Attention on Sphere
Zijie Li
Anthony Y. Zhou
Saurabh Patil
A. Farimani
42
6
0
12 May 2024
12345
Next