Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.08903
Cited By
GemNet: Universal Directional Graph Neural Networks for Molecules
2 June 2021
Johannes Klicpera
Florian Becker
Stephan Günnemann
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"GemNet: Universal Directional Graph Neural Networks for Molecules"
50 / 237 papers shown
Title
AdsorbDiff: Adsorbate Placement via Conditional Denoising Diffusion
Adeesh Kolluru
John R. Kitchin
DiffM
47
4
0
07 May 2024
Graph as Point Set
Xiyuan Wang
Pan Li
Muhan Zhang
GNN
3DPC
PINN
44
4
0
05 May 2024
Lightweight Geometric Deep Learning for Molecular Modelling in Catalyst Discovery
Patrick Geitner
GNN
31
0
0
05 Apr 2024
GeoT: Tensor Centric Library for Graph Neural Network via Efficient Segment Reduction on GPU
Zhongming Yu
Genghan Zhang
Hanxian Huang
Xin Chen
Jishen Zhao
GNN
29
0
0
03 Apr 2024
RiEMann: Near Real-Time SE(3)-Equivariant Robot Manipulation without Point Cloud Segmentation
Chongkai Gao
Zhengrong Xue
Shuying Deng
Tianhai Liang
Siqi Yang
Lin Shao
Huazhe Xu
3DPC
39
10
0
28 Mar 2024
AKBR: Learning Adaptive Kernel-based Representations for Graph Classification
Feifei Qian
Lixin Cui
Yue Wang
Hangyuan Du
Lu Bai
Edwin R. Hancock
21
0
0
24 Mar 2024
Complete and Efficient Graph Transformers for Crystal Material Property Prediction
Keqiang Yan
Cong Fu
Xiaofeng Qian
Xiaoning Qian
Shuiwang Ji
46
19
0
18 Mar 2024
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
Jiaqi Han
Jiacheng Cen
Liming Wu
Zongzhao Li
Xiangzhe Kong
...
Zhewei Wei
Deli Zhao
Yu Rong
Wenbing Huang
Wenbing Huang
AI4CE
34
20
0
01 Mar 2024
Pretraining Strategy for Neural Potentials
Zehua Zhang
Zijie Li
A. Farimani
AI4CE
44
0
0
24 Feb 2024
ChemReasoner: Heuristic Search over a Large Language Model's Knowledge Space using Quantum-Chemical Feedback
Henry W Sprueill
Carl N. Edwards
Khushbu Agarwal
Mariefel V. Olarte
Udishnu Sanyal
Conrad Johnston
Hongbin Liu
Heng Ji
Sutanay Choudhury
LRM
33
7
0
15 Feb 2024
Cartesian atomic cluster expansion for machine learning interatomic potentials
Bingqing Cheng
39
31
0
12 Feb 2024
Impact of Domain Knowledge and Multi-Modality on Intelligent Molecular Property Prediction: A Systematic Survey
Taojie Kuang
Pengfei Liu
Zhixiang Ren
AI4CE
47
1
0
11 Feb 2024
Neural SPH: Improved Neural Modeling of Lagrangian Fluid Dynamics
Artur P. Toshev
Jonas A. Erbesdobler
Nikolaus A. Adams
Johannes Brandstetter
AI4CE
46
4
0
09 Feb 2024
Triplet Interaction Improves Graph Transformers: Accurate Molecular Graph Learning with Triplet Graph Transformers
Md Shamim Hussain
Mohammed J. Zaki
D. Subramanian
ViT
33
5
0
07 Feb 2024
On the Completeness of Invariant Geometric Deep Learning Models
Zian Li
Xiyuan Wang
Shijia Kang
Muhan Zhang
36
2
0
07 Feb 2024
Weisfeiler Leman for Euclidean Equivariant Machine Learning
Snir Hordan
Tal Amir
Nadav Dym
44
5
0
04 Feb 2024
Structure-Aware E(3)-Invariant Molecular Conformer Aggregation Networks
D. M. Nguyen
Nina Lukashina
Tai Nguyen
An T. Le
TrungTin Nguyen
Nhat Ho
Jan Peters
Daniel Sonntag
Viktor Zaverkin
Mathias Niepert
33
5
0
03 Feb 2024
Improving Expressive Power of Spectral Graph Neural Networks with Eigenvalue Correction
Kangkang Lu
Yanhua Yu
Hao Fei
Xuan Li
Zixuan Yang
Zirui Guo
Meiyu Liang
Mengran Yin
Tat-Seng Chua
26
3
0
28 Jan 2024
Bimanual Deformable Bag Manipulation Using a Structure-of-Interest Based Latent Dynamics Model
Peng Zhou
Pai Zheng
Jiaming Qi
Chenxi Li
Chenguang Yang
D. Navarro-Alarcon
Jia Pan
AI4CE
22
1
0
21 Jan 2024
Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt Tensor Products
Shengjie Luo
Tianlang Chen
Aditi S. Krishnapriyan
30
19
0
18 Jan 2024
A Characterization Theorem for Equivariant Networks with Point-wise Activations
Marco Pacini
Xiaowen Dong
Bruno Lepri
G. Santin
44
2
0
17 Jan 2024
Structure-based out-of-distribution (OOD) materials property prediction: a benchmark study
Sadman Sadeed Omee
Nihang Fu
Rongzhi Dong
Ming Hu
Jianjun Hu
OOD
31
17
0
16 Jan 2024
Multi-Modal Representation Learning for Molecular Property Prediction: Sequence, Graph, Geometry
Zeyu Wang
Tianyi Jiang
Jinhuan Wang
Qi Xuan
AI4CE
27
8
0
07 Jan 2024
Graph Elimination Networks
Shuo Wang
Ge Cheng
Yun Zhang
AI4CE
GNN
26
0
0
02 Jan 2024
Accelerating the prediction of inorganic surfaces with machine learning interatomic potentials
Kyle Noordhoek
Christopher J. Bartel
AI4CE
22
6
0
18 Dec 2023
SE(3)-Invariant Multiparameter Persistent Homology for Chiral-Sensitive Molecular Property Prediction
Andac Demir
Francis Prael
B. Kiziltan
19
2
0
12 Dec 2023
Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic potentials
Viktor Zaverkin
David Holzmüller
Henrik Christiansen
Federico Errica
Francesco Alesiani
Makoto Takamoto
Mathias Niepert
Johannes Kastner
AI4CE
29
13
0
03 Dec 2023
PerCNet: Periodic Complete Representation for Crystal Graphs
Jiao Huang
Qianli Xing
Jinglong Ji
Bo Yang
34
1
0
03 Dec 2023
Multiparameter Persistent Homology for Molecular Property Prediction
Andac Demir
B. Kiziltan
22
1
0
17 Nov 2023
STRIDE: Structure-guided Generation for Inverse Design of Molecules
Shehtab Zaman
D. Akhiyarov
Mauricio Araya-Polo
Kenneth Chiu
23
1
0
06 Nov 2023
Gradual Optimization Learning for Conformational Energy Minimization
Artem Tsypin
L. Ugadiarov
Kuzma Khrabrov
Alexander Telepov
Egor Rumiantsev
Alexey Skrynnik
Aleksandr I. Panov
Dmitry Vetrov
E. Tutubalina
Artur Kadurin
24
1
0
05 Nov 2023
Sliced Denoising: A Physics-Informed Molecular Pre-Training Method
Yuyan Ni
Shikun Feng
Wei-Ying Ma
Zhiming Ma
Yanyan Lan
DiffM
AI4CE
32
10
0
03 Nov 2023
Calibrate and Boost Logical Expressiveness of GNN Over Multi-Relational and Temporal Graphs
Yeyuan Chen
Dingmin Wang
19
0
0
03 Nov 2023
Investigating the Behavior of Diffusion Models for Accelerating Electronic Structure Calculations
D. Rothchild
Andrew S. Rosen
Eric Taw
Connie Robinson
Joseph E. Gonzalez
Aditi S. Krishnapriyan
DiffM
26
2
0
02 Nov 2023
The Open DAC 2023 Dataset and Challenges for Sorbent Discovery in Direct Air Capture
Anuroop Sriram
Sihoon Choi
Xiaohan Yu
Logan M. Brabson
Abhishek Das
Zachary W. Ulissi
Matthew Uyttendaele
A. Medford
D. Sholl
AI4CE
27
35
0
01 Nov 2023
Role of Structural and Conformational Diversity for Machine Learning Potentials
Nikhil Shenoy
Prudencio Tossou
Emmanuel Noutahi
Hadrien Mary
Dominique Beaini
Jiarui Ding
AI4CE
19
0
0
30 Oct 2023
Towards Combinatorial Generalization for Catalysts: A Kohn-Sham Charge-Density Approach
Phillip Pope
David Jacobs
24
3
0
28 Oct 2023
From Molecules to Materials: Pre-training Large Generalizable Models for Atomic Property Prediction
Nima Shoghi
Adeesh Kolluru
John R. Kitchin
Zachary W. Ulissi
C. L. Zitnick
Brandon M. Wood
AI4CE
24
32
0
25 Oct 2023
Monte Carlo Thought Search: Large Language Model Querying for Complex Scientific Reasoning in Catalyst Design
Henry W Sprueill
Carl N. Edwards
Mariefel V. Olarte
Udishnu Sanyal
Heng Ji
Sutanay Choudhury
LRM
34
10
0
22 Oct 2023
Learning Interatomic Potentials at Multiple Scales
Xiang Fu
Albert Musaelian
Anders Johansson
Tommi Jaakkola
Boris Kozinsky
29
2
0
20 Oct 2023
MOFDiff: Coarse-grained Diffusion for Metal-Organic Framework Design
Xiang Fu
Tian Xie
Andrew S. Rosen
Tommi Jaakkola
Jake A. Smith
DiffM
42
9
0
16 Oct 2023
Latent Conservative Objective Models for Data-Driven Crystal Structure Prediction
Han Qi
Xinyang Geng
Stefano Rando
Iku Ohama
Aviral Kumar
Sergey Levine
DiffM
42
2
0
16 Oct 2023
Data-Driven Score-Based Models for Generating Stable Structures with Adaptive Crystal Cells
Arsen Sultanov
J. Crivello
Tabea Rebafka
Nataliya Sokolovska
DiffM
29
6
0
16 Oct 2023
Towards Foundational Models for Molecular Learning on Large-Scale Multi-Task Datasets
Dominique Beaini
Shenyang Huang
Joao Alex Cunha
Zhiyi Li
Gabriela Moisescu-Pareja
...
Thérence Bois
Andrew Fitzgibbon
Bla.zej Banaszewski
Chad Martin
Dominic Masters
AI4CE
28
19
0
06 Oct 2023
Fast, Expressive SE
(
n
)
(n)
(
n
)
Equivariant Networks through Weight-Sharing in Position-Orientation Space
Erik J. Bekkers
Sharvaree P. Vadgama
Rob D. Hesselink
P. A. V. D. Linden
David W. Romero
15
24
0
04 Oct 2023
Spline-based neural network interatomic potentials: blending classical and machine learning models
Joshua A Vita
D. Trinkle
14
2
0
04 Oct 2023
On Training Derivative-Constrained Neural Networks
KaiChieh Lo
Daniel Huang
26
3
0
02 Oct 2023
Learning Over Molecular Conformer Ensembles: Datasets and Benchmarks
Yanqiao Zhu
Jeehyun Hwang
Keir Adams
Zhen Liu
B. Nan
...
Olaf Wiest
Olexandr Isayev
Connor W. Coley
Yizhou Sun
Wei Wang
24
6
0
29 Sep 2023
From Peptides to Nanostructures: A Euclidean Transformer for Fast and Stable Machine Learned Force Fields
J. Frank
Oliver T. Unke
Klaus-Robert Muller
Stefan Chmiela
26
3
0
21 Sep 2023
Uncovering Neural Scaling Laws in Molecular Representation Learning
Dingshuo Chen
Yanqiao Zhu
Jieyu Zhang
Yuanqi Du
Zhixun Li
Qiang Liu
Shu Wu
Liang Wang
32
16
0
15 Sep 2023
Previous
1
2
3
4
5
Next