60
2
v1v2v3 (latest)

Learning Equivariant Non-Local Electron Density Functionals

Main:12 Pages
7 Figures
Bibliography:6 Pages
10 Tables
Appendix:7 Pages
Abstract

The accuracy of density functional theory hinges on the approximation of non-local contributions to the exchange-correlation (XC) functional. To date, machine-learned and human-designed approximations suffer from insufficient accuracy, limited scalability, or dependence on costly reference data. To address these issues, we introduce Equivariant Graph Exchange Correlation (EG-XC), a novel non-local XC functional based on equivariant graph neural networks (GNNs). Where previous works relied on semi-local functionals or fixed-size descriptors of the density, we compress the electron density into an SO(3)-equivariant nuclei-centered point cloud for efficient non-local atomic-range interactions. By applying an equivariant GNN on this point cloud, we capture molecular-range interactions in a scalable and accurate manner. To train EG-XC, we differentiate through a self-consistent field solver requiring only energy targets. In our empirical evaluation, we find EG-XC to accurately reconstruct `gold-standard' CCSD(T) energies on MD17. On out-of-distribution conformations of 3BPA, EG-XC reduces the relative MAE by 35% to 50%. Remarkably, EG-XC excels in data efficiency and molecular size extrapolation on QM9, matching force fields trained on 5 times more and larger molecules. On identical training sets, EG-XC yields on average 51% lower MAEs.

View on arXiv
@article{gao2025_2410.07972,
  title={ Learning Equivariant Non-Local Electron Density Functionals },
  author={ Nicholas Gao and Eike Eberhard and Stephan Günnemann },
  journal={arXiv preprint arXiv:2410.07972},
  year={ 2025 }
}
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.