Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.02735
Cited By
Residual Flows for Invertible Generative Modeling
6 June 2019
Ricky T. Q. Chen
Jens Behrmann
David Duvenaud
J. Jacobsen
BDL
TPM
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Residual Flows for Invertible Generative Modeling"
50 / 106 papers shown
Title
HepatoGEN: Generating Hepatobiliary Phase MRI with Perceptual and Adversarial Models
Jens Hooge
Gerard Sanroma-Guell
Faidra Stavropoulou
Alexander Ullmann
Gesine Knobloch
Mark Klemens
Carola Schmidt
Sabine Weckbach
Andreas Bolz
DiffM
MedIm
97
0
0
25 Apr 2025
WaterFlow: Learning Fast & Robust Watermarks using Stable Diffusion
Vinay Shukla
Prachee Sharma
Ryan A. Rossi
Sungchul Kim
Tong Yu
Aditya Grover
WIGM
40
0
0
15 Apr 2025
Learning to Animate Images from A Few Videos to Portray Delicate Human Actions
Haoxin Li
Yingchen Yu
Qilong Wu
Hanwang Zhang
Boyang Li
Song Bai
3DH
VGen
239
0
0
01 Mar 2025
Model Synthesis for Zero-Shot Model Attribution
Tianyun Yang
Juan Cao
Danding Wang
Chang Xu
WIGM
83
4
0
20 Jan 2025
Generative Modelling with High-Order Langevin Dynamics
Ziqiang Shi
Rujie Liu
DiffM
62
2
0
03 Jan 2025
vMF-Contact: Uncertainty-aware Evidential Learning for Probabilistic Contact-grasp in Noisy Clutter
Yitian Shi
Edgar Welte
Maximilian Gilles
Rania Rayyes
43
3
0
06 Nov 2024
Gradients of Functions of Large Matrices
Nicholas Krämer
Pablo Moreno-Muñoz
Hrittik Roy
Søren Hauberg
40
0
0
27 May 2024
Learning Stable and Passive Neural Differential Equations
Jing Cheng
Ruigang Wang
I. Manchester
34
3
0
19 Apr 2024
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Jiayuan Dong
Christian L. Jacobsen
Mehdi Khalloufi
Maryam Akram
Wanjiao Liu
Karthik Duraisamy
Xun Huan
BDL
59
6
0
08 Apr 2024
Generative AI and Process Systems Engineering: The Next Frontier
Benjamin Decardi-Nelson
Abdulelah S. Alshehri
Akshay Ajagekar
Fengqi You
AI4CE
LLMAG
37
24
0
15 Feb 2024
Classification Diffusion Models: Revitalizing Density Ratio Estimation
Shahar Yadin
Noam Elata
T. Michaeli
DiffM
48
1
0
15 Feb 2024
Monotone, Bi-Lipschitz, and Polyak-Lojasiewicz Networks
Ruigang Wang
Krishnamurthy Dvijotham
I. Manchester
41
5
0
02 Feb 2024
How Smooth Is Attention?
Valérie Castin
Pierre Ablin
Gabriel Peyré
AAML
40
9
0
22 Dec 2023
ACT-Diffusion: Efficient Adversarial Consistency Training for One-step Diffusion Models
Fei Kong
Jinhao Duan
Lichao Sun
Hao-Ran Cheng
Renjing Xu
Hengtao Shen
Xiao-lan Zhu
Xiaoshuang Shi
Kaidi Xu
44
3
0
23 Nov 2023
Cousins Of The Vendi Score: A Family Of Similarity-Based Diversity Metrics For Science And Machine Learning
Amey P. Pasarkar
Adji Bousso Dieng
32
11
0
19 Oct 2023
Diffusion Models with Deterministic Normalizing Flow Priors
Mohsen Zand
Ali Etemad
Michael A. Greenspan
DiffM
34
2
0
03 Sep 2023
Computing excited states of molecules using normalizing flows
Yahya Saleh
Álvaro Fernández Corral
Emil Vogt
Armin Iske
J. Küpper
A. Yachmenev
38
7
0
31 Aug 2023
A Review of Change of Variable Formulas for Generative Modeling
Ullrich Kothe
34
6
0
04 Aug 2023
Complementary Frequency-Varying Awareness Network for Open-Set Fine-Grained Image Recognition
Qiulei Dong
Hong Wang
Qiulei Dong
27
0
0
14 Jul 2023
Lifting Architectural Constraints of Injective Flows
Peter Sorrenson
Felix Dräxler
Armand Rousselot
Sander Hummerich
Leandro Zimmerman
Ullrich Kothe
TPM
AI4CE
39
8
0
02 Jun 2023
On the Generalization and Approximation Capacities of Neural Controlled Differential Equations
Linus Bleistein
Agathe Guilloux
40
1
0
26 May 2023
Training Energy-Based Normalizing Flow with Score-Matching Objectives
Chen-Hao Chao
Wei-Fang Sun
Yen-Chang Hsu
Z. Kira
Chun-Yi Lee
33
3
0
24 May 2023
Enhancing Multiple Reliability Measures via Nuisance-extended Information Bottleneck
Jongheon Jeong
Sihyun Yu
Hankook Lee
Jinwoo Shin
AAML
49
0
0
24 Mar 2023
PITS: Variational Pitch Inference without Fundamental Frequency for End-to-End Pitch-controllable TTS
Junhyeok Lee
Wonbin Jung
Hyunjae Cho
Jaeyeon Kim
Jaehwan Kim
22
3
0
24 Feb 2023
Star-Shaped Denoising Diffusion Probabilistic Models
Andrey Okhotin
Dmitry Molchanov
V. Arkhipkin
Grigory Bartosh
Viktor Ohanesian
Aibek Alanov
Dmitry Vetrov
DiffM
45
12
0
10 Feb 2023
Learning Data Representations with Joint Diffusion Models
Kamil Deja
Tomasz Trzciñski
Jakub M. Tomczak
DiffM
30
15
0
31 Jan 2023
Certified Invertibility in Neural Networks via Mixed-Integer Programming
Tianqi Cui
Tom S. Bertalan
George J. Pappas
M. Morari
Ioannis G. Kevrekidis
Mahyar Fazlyab
AAML
27
2
0
27 Jan 2023
EndoBoost: a plug-and-play module for false positive suppression during computer-aided polyp detection in real-world colonoscopy (with dataset)
Haoran Wang
Yan Zhu
W. Qin
Yizhe Zhang
Pinghong Zhou
Quanlin Li
Shuo Wang
Zhijian Song
34
2
0
23 Dec 2022
Denoising Deep Generative Models
G. Loaiza-Ganem
Brendan Leigh Ross
Luhuan Wu
John P. Cunningham
Jesse C. Cresswell
Anthony L. Caterini
DiffM
36
5
0
30 Nov 2022
Proximal Residual Flows for Bayesian Inverse Problems
J. Hertrich
BDL
TPM
44
4
0
30 Nov 2022
Normalizing Flow with Variational Latent Representation
Hanze Dong
Shizhe Diao
Weizhong Zhang
Tong Zhang
BDL
OOD
DRL
16
0
0
21 Nov 2022
Spectral Regularization: an Inductive Bias for Sequence Modeling
Kaiwen Hou
Guillaume Rabusseau
16
3
0
04 Nov 2022
Invertible Rescaling Network and Its Extensions
Mingqing Xiao
Shuxin Zheng
Chang-Shu Liu
Zhouchen Lin
Tie-Yan Liu
37
27
0
09 Oct 2022
Flow Matching for Generative Modeling
Y. Lipman
Ricky T. Q. Chen
Heli Ben-Hamu
Maximilian Nickel
Matt Le
OOD
61
1,081
0
06 Oct 2022
GMMSeg: Gaussian Mixture based Generative Semantic Segmentation Models
Chen Liang
Wenguan Wang
Jiaxu Miao
Yi Yang
VLM
43
117
0
05 Oct 2022
Neural Conservation Laws: A Divergence-Free Perspective
Jack Richter-Powell
Y. Lipman
Ricky T. Q. Chen
56
51
0
04 Oct 2022
Neural PCA for Flow-Based Representation Learning
Shen Li
Bryan Hooi
DRL
13
1
0
23 Aug 2022
Verifying the Union of Manifolds Hypothesis for Image Data
Bradley Brown
Anthony L. Caterini
Brendan Leigh Ross
Jesse C. Cresswell
G. Loaiza-Ganem
44
39
0
06 Jul 2022
A Flexible Diffusion Model
Weitao Du
Tao Yang
Heidi Zhang
Yuanqi Du
DiffM
38
11
0
17 Jun 2022
Entangled Residual Mappings
Mathias Lechner
Ramin Hasani
Z. Babaiee
Radu Grosu
Daniela Rus
T. Henzinger
Sepp Hochreiter
14
5
0
02 Jun 2022
Invertible Neural Networks for Graph Prediction
Chen Xu
Xiuyuan Cheng
Yao Xie
GNN
31
9
0
02 Jun 2022
Flowification: Everything is a Normalizing Flow
Bálint Máté
Samuel Klein
T. Golling
Franccois Fleuret
25
3
0
30 May 2022
Maximum Likelihood Training of Implicit Nonlinear Diffusion Models
Dongjun Kim
Byeonghu Na
S. Kwon
Dongsoo Lee
Wanmo Kang
Il-Chul Moon
DiffM
213
52
0
27 May 2022
A Tale of Two Flows: Cooperative Learning of Langevin Flow and Normalizing Flow Toward Energy-Based Model
Jianwen Xie
Y. Zhu
Juntao Li
Ping Li
29
50
0
13 May 2022
SIReN-VAE: Leveraging Flows and Amortized Inference for Bayesian Networks
Jacobie Mouton
Steve Kroon
DRL
BDL
26
0
0
23 Apr 2022
FastFlows: Flow-Based Models for Molecular Graph Generation
Nathan C. Frey
V. Gadepally
Bharath Ramsundar
36
12
0
28 Jan 2022
WPPNets and WPPFlows: The Power of Wasserstein Patch Priors for Superresolution
Fabian Altekrüger
J. Hertrich
32
15
0
20 Jan 2022
m
∗
m^\ast
m
∗
of two-dimensional electron gas: a neural canonical transformation study
H.-j. Xie
Linfeng Zhang
Lei Wang
36
8
0
10 Jan 2022
A Compact Neural Network-based Algorithm for Robust Image Watermarking
Hongcai Xu
Rong Wang
Jia Wei
Shao-Ping Lu
29
13
0
27 Dec 2021
Score-Based Generative Modeling with Critically-Damped Langevin Diffusion
Tim Dockhorn
Arash Vahdat
Karsten Kreis
DiffM
30
231
0
14 Dec 2021
1
2
3
Next