ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.11638
11
0

Normalizing Flow with Variational Latent Representation

21 November 2022
Hanze Dong
Shizhe Diao
Weizhong Zhang
Tong Zhang
    BDL
    OOD
    DRL
ArXivPDFHTML
Abstract

Normalizing flow (NF) has gained popularity over traditional maximum likelihood based methods due to its strong capability to model complex data distributions. However, the standard approach, which maps the observed data to a normal distribution, has difficulty in handling data distributions with multiple relatively isolated modes. To overcome this issue, we propose a new framework based on variational latent representation to improve the practical performance of NF. The idea is to replace the standard normal latent variable with a more general latent representation, jointly learned via Variational Bayes. For example, by taking the latent representation as a discrete sequence, our framework can learn a Transformer model that generates the latent sequence and an NF model that generates continuous data distribution conditioned on the sequence. The resulting method is significantly more powerful than the standard normalization flow approach for generating data distributions with multiple modes. Extensive experiments have shown the advantages of NF with variational latent representation.

View on arXiv
Comments on this paper