ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02735
  4. Cited By
Residual Flows for Invertible Generative Modeling

Residual Flows for Invertible Generative Modeling

6 June 2019
Ricky T. Q. Chen
Jens Behrmann
David Duvenaud
J. Jacobsen
    BDL
    TPM
    DRL
ArXivPDFHTML

Papers citing "Residual Flows for Invertible Generative Modeling"

50 / 106 papers shown
Title
Why Calibration Error is Wrong Given Model Uncertainty: Using Posterior
  Predictive Checks with Deep Learning
Why Calibration Error is Wrong Given Model Uncertainty: Using Posterior Predictive Checks with Deep Learning
Achintya Gopal
UQCV
30
1
0
02 Dec 2021
Path Integral Sampler: a stochastic control approach for sampling
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
18
101
0
30 Nov 2021
Characteristic Neural Ordinary Differential Equations
Characteristic Neural Ordinary Differential Equations
Xingzi Xu
Ali Hasan
Khalil Elkhalil
Jie Ding
Vahid Tarokh
BDL
34
3
0
25 Nov 2021
Generalized Normalizing Flows via Markov Chains
Generalized Normalizing Flows via Markov Chains
Paul Hagemann
J. Hertrich
Gabriele Steidl
BDL
DiffM
AI4CE
30
22
0
24 Nov 2021
On Training Implicit Models
On Training Implicit Models
Zhengyang Geng
Xinyu Zhang
Shaojie Bai
Yisen Wang
Zhouchen Lin
72
69
0
09 Nov 2021
Resampling Base Distributions of Normalizing Flows
Resampling Base Distributions of Normalizing Flows
Vincent Stimper
Bernhard Schölkopf
José Miguel Hernández-Lobato
BDL
30
32
0
29 Oct 2021
Diffusion Normalizing Flow
Diffusion Normalizing Flow
Qinsheng Zhang
Yongxin Chen
DiffM
35
87
0
14 Oct 2021
Deep Generative Modeling for Protein Design
Deep Generative Modeling for Protein Design
Alexey Strokach
Philip M. Kim
AI4CE
179
90
0
31 Aug 2021
CDCGen: Cross-Domain Conditional Generation via Normalizing Flows and
  Adversarial Training
CDCGen: Cross-Domain Conditional Generation via Normalizing Flows and Adversarial Training
Hari Prasanna Das
Ryan Tran
Japjot Singh
Yu-Wen Lin
C. Spanos
OOD
21
11
0
25 Aug 2021
Moser Flow: Divergence-based Generative Modeling on Manifolds
Moser Flow: Divergence-based Generative Modeling on Manifolds
N. Rozen
Aditya Grover
Maximilian Nickel
Y. Lipman
DRL
AI4CE
27
57
0
18 Aug 2021
Tail of Distribution GAN (TailGAN): Generative-Adversarial-Network-Based
  Boundary Formation
Tail of Distribution GAN (TailGAN): Generative-Adversarial-Network-Based Boundary Formation
Nikolaos Dionelis
Mehrdad Yaghoobi
Sotirios A. Tsaftaris
GAN
25
14
0
24 Jul 2021
Boundary of Distribution Support Generator (BDSG): Sample Generation on
  the Boundary
Boundary of Distribution Support Generator (BDSG): Sample Generation on the Boundary
Nikolaos Dionelis
Mehrdad Yaghoobi
Sotirios A. Tsaftaris
18
12
0
21 Jul 2021
Copula-Based Normalizing Flows
Copula-Based Normalizing Flows
M. Laszkiewicz
Johannes Lederer
Asja Fischer
36
7
0
15 Jul 2021
Task-agnostic Continual Learning with Hybrid Probabilistic Models
Task-agnostic Continual Learning with Hybrid Probabilistic Models
Polina Kirichenko
Mehrdad Farajtabar
Dushyant Rao
Balaji Lakshminarayanan
Nir Levine
Ang Li
Huiyi Hu
A. Wilson
Razvan Pascanu
VLM
BDL
CLL
27
19
0
24 Jun 2021
Sparse Flows: Pruning Continuous-depth Models
Sparse Flows: Pruning Continuous-depth Models
Lucas Liebenwein
Ramin Hasani
Alexander Amini
Daniela Rus
26
16
0
24 Jun 2021
Approximation capabilities of measure-preserving neural networks
Approximation capabilities of measure-preserving neural networks
Aiqing Zhu
Pengzhan Jin
Yifa Tang
34
8
0
21 Jun 2021
Independent mechanism analysis, a new concept?
Independent mechanism analysis, a new concept?
Luigi Gresele
Julius von Kügelgen
Vincent Stimper
Bernhard Schölkopf
M. Besserve
CML
23
100
0
09 Jun 2021
Optimizing Functionals on the Space of Probabilities with Input Convex
  Neural Networks
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis
Yair Schiff
Youssef Mroueh
40
53
0
01 Jun 2021
Efficient and Accurate Gradients for Neural SDEs
Efficient and Accurate Gradients for Neural SDEs
Patrick Kidger
James Foster
Xuechen Li
Terry Lyons
DiffM
29
61
0
27 May 2021
PointLIE: Locally Invertible Embedding for Point Cloud Sampling and
  Recovery
PointLIE: Locally Invertible Embedding for Point Cloud Sampling and Recovery
Weibing Zhao
Xu Yan
Jiantao Gao
Ruimao Zhang
Jiayan Zhang
Zhen Li
Song Wu
Shuguang Cui
3DPC
18
7
0
30 Apr 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
48
485
0
08 Mar 2021
Trumpets: Injective Flows for Inference and Inverse Problems
Trumpets: Injective Flows for Inference and Inverse Problems
K. Kothari
AmirEhsan Khorashadizadeh
Maarten V. de Hoop
Ivan Dokmanić
TPM
29
50
0
20 Feb 2021
Bias-Free Scalable Gaussian Processes via Randomized Truncations
Bias-Free Scalable Gaussian Processes via Randomized Truncations
Andres Potapczynski
Luhuan Wu
D. Biderman
Geoff Pleiss
John P. Cunningham
26
19
0
12 Feb 2021
Jacobian Determinant of Normalizing Flows
Jacobian Determinant of Normalizing Flows
Huadong Liao
Jiawei He
DRL
19
7
0
12 Feb 2021
MALI: A memory efficient and reverse accurate integrator for Neural ODEs
MALI: A memory efficient and reverse accurate integrator for Neural ODEs
Juntang Zhuang
Nicha Dvornek
S. Tatikonda
James S. Duncan
27
49
0
09 Feb 2021
Variational Determinant Estimation with Spherical Normalizing Flows
Variational Determinant Estimation with Spherical Normalizing Flows
Simon Passenheim
Emiel Hoogeboom
BDL
31
1
0
24 Dec 2020
Convex Potential Flows: Universal Probability Distributions with Optimal
  Transport and Convex Optimization
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
119
96
0
10 Dec 2020
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
96
6,126
0
26 Nov 2020
Self Normalizing Flows
Self Normalizing Flows
Thomas Anderson Keller
Jorn W. T. Peters
P. Jaini
Emiel Hoogeboom
Patrick Forré
Max Welling
30
14
0
14 Nov 2020
Neural Empirical Bayes: Source Distribution Estimation and its
  Applications to Simulation-Based Inference
Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference
M. Vandegar
Michael Kagan
Antoine Wehenkel
Gilles Louppe
34
27
0
11 Nov 2020
Principled Interpolation in Normalizing Flows
Principled Interpolation in Normalizing Flows
Samuel G. Fadel
Sebastian Mair
Ricardo da S. Torres
Ulf Brefeld
83
3
0
22 Oct 2020
Self-Supervised Variational Auto-Encoders
Self-Supervised Variational Auto-Encoders
Ioannis Gatopoulos
Jakub M. Tomczak
37
13
0
05 Oct 2020
Discrete Point Flow Networks for Efficient Point Cloud Generation
Discrete Point Flow Networks for Efficient Point Cloud Generation
Roman Klokov
Edmond Boyer
Jakob Verbeek
3DPC
31
107
0
20 Jul 2020
Deep composition of tensor-trains using squared inverse Rosenblatt
  transports
Deep composition of tensor-trains using squared inverse Rosenblatt transports
Tiangang Cui
S. Dolgov
OT
28
33
0
14 Jul 2020
Riemannian Continuous Normalizing Flows
Riemannian Continuous Normalizing Flows
Emile Mathieu
Maximilian Nickel
AI4CE
27
119
0
18 Jun 2020
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and
  Optimization
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization
Abhinav Agrawal
Daniel Sheldon
Justin Domke
TPM
BDL
19
38
0
18 Jun 2020
Understanding and Mitigating Exploding Inverses in Invertible Neural
  Networks
Understanding and Mitigating Exploding Inverses in Invertible Neural Networks
Jens Behrmann
Paul Vicol
Kuan-Chieh Jackson Wang
Roger C. Grosse
J. Jacobsen
23
93
0
16 Jun 2020
Learning normalizing flows from Entropy-Kantorovich potentials
Learning normalizing flows from Entropy-Kantorovich potentials
Chris Finlay
Augusto Gerolin
Adam M. Oberman
Aram-Alexandre Pooladian
33
23
0
10 Jun 2020
The Lipschitz Constant of Self-Attention
The Lipschitz Constant of Self-Attention
Hyunjik Kim
George Papamakarios
A. Mnih
16
135
0
08 Jun 2020
The Convolution Exponential and Generalized Sylvester Flows
The Convolution Exponential and Generalized Sylvester Flows
Emiel Hoogeboom
Victor Garcia Satorras
Jakub M. Tomczak
Max Welling
30
28
0
02 Jun 2020
Invertible Image Rescaling
Invertible Image Rescaling
Mingqing Xiao
Shuxin Zheng
Chang-Shu Liu
Yaolong Wang
Di He
Guolin Ke
Jiang Bian
Zhouchen Lin
Tie-Yan Liu
SupR
33
234
0
12 May 2020
Hybrid Models for Open Set Recognition
Hybrid Models for Open Set Recognition
Hongjie Zhang
Ang Li
Jie Guo
Yanwen Guo
BDL
28
184
0
27 Mar 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows
  and Latent Variable Models
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
31
87
0
17 Feb 2020
Stochastic Normalizing Flows
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
57
176
0
16 Feb 2020
How to train your neural ODE: the world of Jacobian and kinetic
  regularization
How to train your neural ODE: the world of Jacobian and kinetic regularization
Chris Finlay
J. Jacobsen
L. Nurbekyan
Adam M. Oberman
11
296
0
07 Feb 2020
Learning Discrete Distributions by Dequantization
Learning Discrete Distributions by Dequantization
Emiel Hoogeboom
Taco S. Cohen
Jakub M. Tomczak
DRL
34
31
0
30 Jan 2020
Invertible Generative Modeling using Linear Rational Splines
Invertible Generative Modeling using Linear Rational Splines
H. M. Dolatabadi
S. Erfani
C. Leckie
40
65
0
15 Jan 2020
Semi-Supervised Learning with Normalizing Flows
Semi-Supervised Learning with Normalizing Flows
Pavel Izmailov
Polina Kirichenko
Marc Finzi
A. Wilson
DRL
BDL
40
111
0
30 Dec 2019
Your Classifier is Secretly an Energy Based Model and You Should Treat
  it Like One
Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One
Will Grathwohl
Kuan-Chieh Jackson Wang
J. Jacobsen
David Duvenaud
Mohammad Norouzi
Kevin Swersky
VLM
43
529
0
06 Dec 2019
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
67
1,635
0
05 Dec 2019
Previous
123
Next