Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.02735
Cited By
Residual Flows for Invertible Generative Modeling
6 June 2019
Ricky T. Q. Chen
Jens Behrmann
David Duvenaud
J. Jacobsen
BDL
TPM
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Residual Flows for Invertible Generative Modeling"
50 / 106 papers shown
Title
Why Calibration Error is Wrong Given Model Uncertainty: Using Posterior Predictive Checks with Deep Learning
Achintya Gopal
UQCV
30
1
0
02 Dec 2021
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
18
101
0
30 Nov 2021
Characteristic Neural Ordinary Differential Equations
Xingzi Xu
Ali Hasan
Khalil Elkhalil
Jie Ding
Vahid Tarokh
BDL
34
3
0
25 Nov 2021
Generalized Normalizing Flows via Markov Chains
Paul Hagemann
J. Hertrich
Gabriele Steidl
BDL
DiffM
AI4CE
30
22
0
24 Nov 2021
On Training Implicit Models
Zhengyang Geng
Xinyu Zhang
Shaojie Bai
Yisen Wang
Zhouchen Lin
72
69
0
09 Nov 2021
Resampling Base Distributions of Normalizing Flows
Vincent Stimper
Bernhard Schölkopf
José Miguel Hernández-Lobato
BDL
30
32
0
29 Oct 2021
Diffusion Normalizing Flow
Qinsheng Zhang
Yongxin Chen
DiffM
35
87
0
14 Oct 2021
Deep Generative Modeling for Protein Design
Alexey Strokach
Philip M. Kim
AI4CE
179
90
0
31 Aug 2021
CDCGen: Cross-Domain Conditional Generation via Normalizing Flows and Adversarial Training
Hari Prasanna Das
Ryan Tran
Japjot Singh
Yu-Wen Lin
C. Spanos
OOD
21
11
0
25 Aug 2021
Moser Flow: Divergence-based Generative Modeling on Manifolds
N. Rozen
Aditya Grover
Maximilian Nickel
Y. Lipman
DRL
AI4CE
27
57
0
18 Aug 2021
Tail of Distribution GAN (TailGAN): Generative-Adversarial-Network-Based Boundary Formation
Nikolaos Dionelis
Mehrdad Yaghoobi
Sotirios A. Tsaftaris
GAN
25
14
0
24 Jul 2021
Boundary of Distribution Support Generator (BDSG): Sample Generation on the Boundary
Nikolaos Dionelis
Mehrdad Yaghoobi
Sotirios A. Tsaftaris
18
12
0
21 Jul 2021
Copula-Based Normalizing Flows
M. Laszkiewicz
Johannes Lederer
Asja Fischer
36
7
0
15 Jul 2021
Task-agnostic Continual Learning with Hybrid Probabilistic Models
Polina Kirichenko
Mehrdad Farajtabar
Dushyant Rao
Balaji Lakshminarayanan
Nir Levine
Ang Li
Huiyi Hu
A. Wilson
Razvan Pascanu
VLM
BDL
CLL
27
19
0
24 Jun 2021
Sparse Flows: Pruning Continuous-depth Models
Lucas Liebenwein
Ramin Hasani
Alexander Amini
Daniela Rus
26
16
0
24 Jun 2021
Approximation capabilities of measure-preserving neural networks
Aiqing Zhu
Pengzhan Jin
Yifa Tang
34
8
0
21 Jun 2021
Independent mechanism analysis, a new concept?
Luigi Gresele
Julius von Kügelgen
Vincent Stimper
Bernhard Schölkopf
M. Besserve
CML
23
100
0
09 Jun 2021
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis
Yair Schiff
Youssef Mroueh
40
53
0
01 Jun 2021
Efficient and Accurate Gradients for Neural SDEs
Patrick Kidger
James Foster
Xuechen Li
Terry Lyons
DiffM
29
61
0
27 May 2021
PointLIE: Locally Invertible Embedding for Point Cloud Sampling and Recovery
Weibing Zhao
Xu Yan
Jiantao Gao
Ruimao Zhang
Jiayan Zhang
Zhen Li
Song Wu
Shuguang Cui
3DPC
18
7
0
30 Apr 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
48
485
0
08 Mar 2021
Trumpets: Injective Flows for Inference and Inverse Problems
K. Kothari
AmirEhsan Khorashadizadeh
Maarten V. de Hoop
Ivan Dokmanić
TPM
29
50
0
20 Feb 2021
Bias-Free Scalable Gaussian Processes via Randomized Truncations
Andres Potapczynski
Luhuan Wu
D. Biderman
Geoff Pleiss
John P. Cunningham
26
19
0
12 Feb 2021
Jacobian Determinant of Normalizing Flows
Huadong Liao
Jiawei He
DRL
19
7
0
12 Feb 2021
MALI: A memory efficient and reverse accurate integrator for Neural ODEs
Juntang Zhuang
Nicha Dvornek
S. Tatikonda
James S. Duncan
27
49
0
09 Feb 2021
Variational Determinant Estimation with Spherical Normalizing Flows
Simon Passenheim
Emiel Hoogeboom
BDL
31
1
0
24 Dec 2020
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
119
96
0
10 Dec 2020
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
96
6,126
0
26 Nov 2020
Self Normalizing Flows
Thomas Anderson Keller
Jorn W. T. Peters
P. Jaini
Emiel Hoogeboom
Patrick Forré
Max Welling
30
14
0
14 Nov 2020
Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference
M. Vandegar
Michael Kagan
Antoine Wehenkel
Gilles Louppe
34
27
0
11 Nov 2020
Principled Interpolation in Normalizing Flows
Samuel G. Fadel
Sebastian Mair
Ricardo da S. Torres
Ulf Brefeld
83
3
0
22 Oct 2020
Self-Supervised Variational Auto-Encoders
Ioannis Gatopoulos
Jakub M. Tomczak
37
13
0
05 Oct 2020
Discrete Point Flow Networks for Efficient Point Cloud Generation
Roman Klokov
Edmond Boyer
Jakob Verbeek
3DPC
31
107
0
20 Jul 2020
Deep composition of tensor-trains using squared inverse Rosenblatt transports
Tiangang Cui
S. Dolgov
OT
28
33
0
14 Jul 2020
Riemannian Continuous Normalizing Flows
Emile Mathieu
Maximilian Nickel
AI4CE
27
119
0
18 Jun 2020
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization
Abhinav Agrawal
Daniel Sheldon
Justin Domke
TPM
BDL
19
38
0
18 Jun 2020
Understanding and Mitigating Exploding Inverses in Invertible Neural Networks
Jens Behrmann
Paul Vicol
Kuan-Chieh Jackson Wang
Roger C. Grosse
J. Jacobsen
23
93
0
16 Jun 2020
Learning normalizing flows from Entropy-Kantorovich potentials
Chris Finlay
Augusto Gerolin
Adam M. Oberman
Aram-Alexandre Pooladian
33
23
0
10 Jun 2020
The Lipschitz Constant of Self-Attention
Hyunjik Kim
George Papamakarios
A. Mnih
16
135
0
08 Jun 2020
The Convolution Exponential and Generalized Sylvester Flows
Emiel Hoogeboom
Victor Garcia Satorras
Jakub M. Tomczak
Max Welling
30
28
0
02 Jun 2020
Invertible Image Rescaling
Mingqing Xiao
Shuxin Zheng
Chang-Shu Liu
Yaolong Wang
Di He
Guolin Ke
Jiang Bian
Zhouchen Lin
Tie-Yan Liu
SupR
33
234
0
12 May 2020
Hybrid Models for Open Set Recognition
Hongjie Zhang
Ang Li
Jie Guo
Yanwen Guo
BDL
28
184
0
27 Mar 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
31
87
0
17 Feb 2020
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
57
176
0
16 Feb 2020
How to train your neural ODE: the world of Jacobian and kinetic regularization
Chris Finlay
J. Jacobsen
L. Nurbekyan
Adam M. Oberman
11
296
0
07 Feb 2020
Learning Discrete Distributions by Dequantization
Emiel Hoogeboom
Taco S. Cohen
Jakub M. Tomczak
DRL
34
31
0
30 Jan 2020
Invertible Generative Modeling using Linear Rational Splines
H. M. Dolatabadi
S. Erfani
C. Leckie
40
65
0
15 Jan 2020
Semi-Supervised Learning with Normalizing Flows
Pavel Izmailov
Polina Kirichenko
Marc Finzi
A. Wilson
DRL
BDL
40
111
0
30 Dec 2019
Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One
Will Grathwohl
Kuan-Chieh Jackson Wang
J. Jacobsen
David Duvenaud
Mohammad Norouzi
Kevin Swersky
VLM
43
529
0
06 Dec 2019
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
67
1,635
0
05 Dec 2019
Previous
1
2
3
Next