ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.05789
  4. Cited By
Diagnosing and Enhancing VAE Models
v1v2 (latest)

Diagnosing and Enhancing VAE Models

14 March 2019
Bin Dai
David Wipf
    DRL
ArXiv (abs)PDFHTML

Papers citing "Diagnosing and Enhancing VAE Models"

50 / 242 papers shown
Title
Multi-modal Latent Diffusion
Multi-modal Latent Diffusion
Mustapha Bounoua
Giulio Franzese
Pietro Michiardi
DiffM
98
13
0
07 Jun 2023
Coupled Variational Autoencoder
Coupled Variational Autoencoder
Xiaoran Hao
Patrick Shafto
BDLDRL
64
4
0
05 Jun 2023
End-to-end Training of Deep Boltzmann Machines by Unbiased Contrastive
  Divergence with Local Mode Initialization
End-to-end Training of Deep Boltzmann Machines by Unbiased Contrastive Divergence with Local Mode Initialization
Shohei Taniguchi
Masahiro Suzuki
Yusuke Iwasawa
Yutaka Matsuo
SyDa
84
2
0
31 May 2023
DiffLoad: Uncertainty Quantification in Load Forecasting with Diffusion
  Model
DiffLoad: Uncertainty Quantification in Load Forecasting with Diffusion Model
Zhixian Wang
Qingsong Wen
Chaoli Zhang
Liang Sun
Yi Wang
DiffM
73
5
0
31 May 2023
One-Line-of-Code Data Mollification Improves Optimization of
  Likelihood-based Generative Models
One-Line-of-Code Data Mollification Improves Optimization of Likelihood-based Generative Models
Ba-Hien Tran
Giulio Franzese
Pietro Michiardi
Maurizio Filippone
DiffM
128
4
0
30 May 2023
Generative Sliced MMD Flows with Riesz Kernels
Generative Sliced MMD Flows with Riesz Kernels
J. Hertrich
Christian Wald
Fabian Altekrüger
Paul Hagemann
97
27
0
19 May 2023
Geometric Latent Diffusion Models for 3D Molecule Generation
Geometric Latent Diffusion Models for 3D Molecule Generation
Minkai Xu
Alexander Powers
R. Dror
Stefano Ermon
J. Leskovec
DiffMAI4CE
160
151
0
02 May 2023
How good are variational autoencoders at transfer learning?
How good are variational autoencoders at transfer learning?
Lisa Bonheme
M. Grzes
OODDRL
55
2
0
21 Apr 2023
Manifold Learning by Mixture Models of VAEs for Inverse Problems
Manifold Learning by Mixture Models of VAEs for Inverse Problems
Giovanni S. Alberti
J. Hertrich
Matteo Santacesaria
Silvia Sciutto
DRL
109
7
0
27 Mar 2023
Enhancing Multiple Reliability Measures via Nuisance-extended
  Information Bottleneck
Enhancing Multiple Reliability Measures via Nuisance-extended Information Bottleneck
Jongheon Jeong
Sihyun Yu
Hankook Lee
Jinwoo Shin
AAML
80
0
0
24 Mar 2023
High Fidelity Image Synthesis With Deep VAEs In Latent Space
High Fidelity Image Synthesis With Deep VAEs In Latent Space
Troy Luhman
Eric Luhman
DRL3DV
63
7
0
23 Mar 2023
Learning Manifold Dimensions with Conditional Variational Autoencoders
Learning Manifold Dimensions with Conditional Variational Autoencoders
Yijia Zheng
Tong He
Yixuan Qiu
David Wipf
DRL
88
21
0
23 Feb 2023
Distributional Learning of Variational AutoEncoder: Application to
  Synthetic Data Generation
Distributional Learning of Variational AutoEncoder: Application to Synthetic Data Generation
SeungHwan An
Jong-June Jeon
DRL
155
8
0
22 Feb 2023
Shortcut Detection with Variational Autoencoders
Shortcut Detection with Variational Autoencoders
Nicolas Müller
Simon Roschmann
Shahbaz Khan
Philip Sperl
Konstantin Böttinger
AAMLDRL
72
2
0
08 Feb 2023
GAMMA: Generative Augmentation for Attentive Marine Debris Detection
GAMMA: Generative Augmentation for Attentive Marine Debris Detection
Vaishnavi Khindkar
Janhavi Khindkar
ViT
64
1
0
07 Dec 2022
Improving Molecule Properties Through 2-Stage VAE
Improving Molecule Properties Through 2-Stage VAE
Chenghui Zhou
Barnabás Póczós
DRL
78
1
0
06 Dec 2022
Denoising Deep Generative Models
Denoising Deep Generative Models
Gabriel Loaiza-Ganem
Brendan Leigh Ross
Luhuan Wu
John P. Cunningham
Jesse C. Cresswell
Anthony L. Caterini
DiffM
102
5
0
30 Nov 2022
Clarity: an improved gradient method for producing quality visual
  counterfactual explanations
Clarity: an improved gradient method for producing quality visual counterfactual explanations
Claire Theobald
Frédéric Pennerath
Brieuc Conan-Guez
Miguel Couceiro
Amedeo Napoli
BDL
90
1
0
22 Nov 2022
NVDiff: Graph Generation through the Diffusion of Node Vectors
NVDiff: Graph Generation through the Diffusion of Node Vectors
Xiaohui Chen
Yukun Li
Aonan Zhang
Liping Liu
DiffM
93
23
0
19 Nov 2022
On the failure of variational score matching for VAE models
On the failure of variational score matching for VAE models
W. K. Li
DRL
42
2
0
24 Oct 2022
Gaussian-Bernoulli RBMs Without Tears
Gaussian-Bernoulli RBMs Without Tears
Renjie Liao
Simon Kornblith
Mengye Ren
David J. Fleet
Geoffrey E. Hinton
BDLOOD
47
13
0
19 Oct 2022
Optimizing Hierarchical Image VAEs for Sample Quality
Optimizing Hierarchical Image VAEs for Sample Quality
Eric Luhman
Troy Luhman
DRL
75
5
0
18 Oct 2022
Auto-Encoding Goodness of Fit
Auto-Encoding Goodness of Fit
A. Palmer
Zhiyi Chi
Derek Aguiar
J. Bi
112
1
0
12 Oct 2022
Deep Invertible Approximation of Topologically Rich Maps between
  Manifolds
Deep Invertible Approximation of Topologically Rich Maps between Manifolds
Michael Puthawala
Matti Lassas
Ivan Dokmanić
Pekka Pankka
Maarten V. de Hoop
MedIm
70
0
0
02 Oct 2022
Training β-VAE by Aggregating a Learned Gaussian Posterior with a
  Decoupled Decoder
Training β-VAE by Aggregating a Learned Gaussian Posterior with a Decoupled Decoder
Jianning Li
Jana Fragemann
Seyed-Ahmad Ahmadi
Jens Kleesiek
Jan Egger
DRL
65
5
0
29 Sep 2022
FONDUE: an algorithm to find the optimal dimensionality of the latent
  representations of variational autoencoders
FONDUE: an algorithm to find the optimal dimensionality of the latent representations of variational autoencoders
Lisa Bonheme
M. Grzes
DRL
86
6
0
26 Sep 2022
Continuous Mixtures of Tractable Probabilistic Models
Continuous Mixtures of Tractable Probabilistic Models
Alvaro H. C. Correia
G. Gala
Erik Quaeghebeur
Cassio de Campos
Robert Peharz
TPM
87
18
0
21 Sep 2022
Adaptive Multi-stage Density Ratio Estimation for Learning Latent Space
  Energy-based Model
Adaptive Multi-stage Density Ratio Estimation for Learning Latent Space Energy-based Model
Zhisheng Xiao
Tian Han
104
15
0
19 Sep 2022
A Geometric Perspective on Variational Autoencoders
A Geometric Perspective on Variational Autoencoders
Clément Chadebec
S. Allassonnière
DRL
93
24
0
15 Sep 2022
Gromov-Wasserstein Autoencoders
Gromov-Wasserstein Autoencoders
Nao Nakagawa
Ren Togo
Takahiro Ogawa
Miki Haseyama
GANDRL
91
12
0
15 Sep 2022
3DFaceShop: Explicitly Controllable 3D-Aware Portrait Generation
3DFaceShop: Explicitly Controllable 3D-Aware Portrait Generation
Junshu Tang
Bo Zhang
Binxin Yang
Ting Zhang
Dong Chen
Lizhuang Ma
Fang Wen
3DH
96
19
0
12 Sep 2022
Synthetic Data in Human Analysis: A Survey
Synthetic Data in Human Analysis: A Survey
Indu Joshi
Marcel Grimmer
Christian Rathgeb
Christoph Busch
Francois Bremond
A. Dantcheva
118
49
0
19 Aug 2022
Learning Dynamic Manipulation Skills from Haptic-Play
Learning Dynamic Manipulation Skills from Haptic-Play
Taeyoon Lee
D. Sung
Kyoung-Whan Choi
Choong-Keun Lee
Changwoo Park
Keunjun Choi
88
3
0
28 Jul 2022
Comparing the latent space of generative models
Comparing the latent space of generative models
Andrea Asperti
Valerio Tonelli
DRL
74
13
0
14 Jul 2022
Big Learning
Big Learning
Yulai Cong
Miaoyun Zhao
AI4CE
94
0
0
08 Jul 2022
Verifying the Union of Manifolds Hypothesis for Image Data
Verifying the Union of Manifolds Hypothesis for Image Data
Bradley Brown
Anthony L. Caterini
Brendan Leigh Ross
Jesse C. Cresswell
Gabriel Loaiza-Ganem
137
43
0
06 Jul 2022
Neural Implicit Manifold Learning for Topology-Aware Density Estimation
Neural Implicit Manifold Learning for Topology-Aware Density Estimation
Brendan Leigh Ross
Gabriel Loaiza-Ganem
Anthony L. Caterini
Jesse C. Cresswell
AI4CE
73
3
0
22 Jun 2022
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use
  Case
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Clément Chadebec
Louis J. Vincent
S. Allassonnière
DRL
98
30
0
16 Jun 2022
Explainable AI for High Energy Physics
Explainable AI for High Energy Physics
Mark S. Neubauer
Avik Roy
78
10
0
14 Jun 2022
Recent Advances for Quantum Neural Networks in Generative Learning
Recent Advances for Quantum Neural Networks in Generative Learning
Jinkai Tian
Xiaoyun Sun
Yuxuan Du
Shanshan Zhao
Qing Liu
...
Xingyao Wu
Min-hsiu Hsieh
Tongliang Liu
Wen-Bin Yang
Dacheng Tao
AI4CE
98
85
0
07 Jun 2022
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Patrik Reizinger
Luigi Gresele
Jack Brady
Julius von Kügelgen
Dominik Zietlow
Bernhard Schölkopf
Georg Martius
Wieland Brendel
M. Besserve
DRL
98
21
0
06 Jun 2022
DiVAE: Photorealistic Images Synthesis with Denoising Diffusion Decoder
DiVAE: Photorealistic Images Synthesis with Denoising Diffusion Decoder
Jie Shi
Chenfei Wu
Jian Liang
Xiang Liu
Nan Duan
DiffM
76
26
0
01 Jun 2022
RENs: Relevance Encoding Networks
RENs: Relevance Encoding Networks
Krithika S. Iyer
Riddhish Bhalodia
Shireen Y. Elhabian
DRL
118
1
0
25 May 2022
Generalization Gap in Amortized Inference
Generalization Gap in Amortized Inference
Mingtian Zhang
Peter Hayes
David Barber
BDLCMLDRL
125
14
0
23 May 2022
Deterministic training of generative autoencoders using invertible
  layers
Deterministic training of generative autoencoders using invertible layers
Gianluigi Silvestri
Daan Roos
L. Ambrogioni
TPM
76
2
0
19 May 2022
How do Variational Autoencoders Learn? Insights from Representational
  Similarity
How do Variational Autoencoders Learn? Insights from Representational Similarity
Lisa Bonheme
M. Grzes
CoGeSSLDRL
100
10
0
17 May 2022
Gradient-based Counterfactual Explanations using Tractable Probabilistic
  Models
Gradient-based Counterfactual Explanations using Tractable Probabilistic Models
Xiaoting Shao
Kristian Kersting
BDL
56
1
0
16 May 2022
A Tale of Two Flows: Cooperative Learning of Langevin Flow and
  Normalizing Flow Toward Energy-Based Model
A Tale of Two Flows: Cooperative Learning of Langevin Flow and Normalizing Flow Toward Energy-Based Model
Jianwen Xie
Y. Zhu
Jilong Li
Ping Li
88
50
0
13 May 2022
SKILL-IL: Disentangling Skill and Knowledge in Multitask Imitation
  Learning
SKILL-IL: Disentangling Skill and Knowledge in Multitask Imitation Learning
Xihan Bian
Oscar Alejandro Mendez Maldonado
Simon Hadfield
82
6
0
06 May 2022
End-to-End Visual Editing with a Generatively Pre-Trained Artist
End-to-End Visual Editing with a Generatively Pre-Trained Artist
A. Brown
Cheng-Yang Fu
Omkar M. Parkhi
Tamara L. Berg
Andrea Vedaldi
DiffM
89
8
0
03 May 2022
Previous
12345
Next