ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.05789
  4. Cited By
Diagnosing and Enhancing VAE Models
v1v2 (latest)

Diagnosing and Enhancing VAE Models

14 March 2019
Bin Dai
David Wipf
    DRL
ArXiv (abs)PDFHTML

Papers citing "Diagnosing and Enhancing VAE Models"

50 / 242 papers shown
Title
Particle algorithms for maximum likelihood training of latent variable
  models
Particle algorithms for maximum likelihood training of latent variable models
Juan Kuntz
Jen Ning Lim
A. M. Johansen
FedML
121
23
0
27 Apr 2022
Diagnosing and Fixing Manifold Overfitting in Deep Generative Models
Diagnosing and Fixing Manifold Overfitting in Deep Generative Models
Gabriel Loaiza-Ganem
Brendan Leigh Ross
Jesse C. Cresswell
Anthony L. Caterini
GANDRL
104
31
0
14 Apr 2022
Learning and controlling the source-filter representation of speech with
  a variational autoencoder
Learning and controlling the source-filter representation of speech with a variational autoencoder
Samir Sadok
Simon Leglaive
Laurent Girin
Xavier Alameda-Pineda
Renaud Séguier
SSLDRLBDL
115
14
0
14 Apr 2022
Pixel VQ-VAEs for Improved Pixel Art Representation
Pixel VQ-VAEs for Improved Pixel Art Representation
Akash Saravanan
Matthew J. Guzdial
54
8
0
23 Mar 2022
VQ-Flows: Vector Quantized Local Normalizing Flows
VQ-Flows: Vector Quantized Local Normalizing Flows
Sahil Sidheekh
Chris B. Dock
Tushar Jain
R. Balan
M. Singh
65
8
0
22 Mar 2022
AnoViT: Unsupervised Anomaly Detection and Localization with Vision
  Transformer-based Encoder-Decoder
AnoViT: Unsupervised Anomaly Detection and Localization with Vision Transformer-based Encoder-Decoder
Yunseung Lee
Pilsung Kang
ViT
85
77
0
21 Mar 2022
The Transitive Information Theory and its Application to Deep Generative
  Models
The Transitive Information Theory and its Application to Deep Generative Models
Trung Ngo Trong
Najwa Laabid
Ville Hautamaki
M. Heinäniemi
DRL
95
0
0
09 Mar 2022
Variational Autoencoders Without the Variation
Variational Autoencoders Without the Variation
Gregory A. Daly
J. Fieldsend
G. Tabor
63
2
0
01 Mar 2022
Exact Solutions of a Deep Linear Network
Exact Solutions of a Deep Linear Network
Liu Ziyin
Botao Li
Xiangmin Meng
ODL
88
22
0
10 Feb 2022
Enhancing variational generation through self-decomposition
Enhancing variational generation through self-decomposition
Andrea Asperti
Laura Bugo
Daniele Filippini
DRL
95
2
0
06 Feb 2022
Direct Molecular Conformation Generation
Direct Molecular Conformation Generation
Jinhua Zhu
Yingce Xia
Chang-Shu Liu
Lijun Wu
Shufang Xie
...
Tao Qin
Wen-gang Zhou
Houqiang Li
Haiguang Liu
Tie-Yan Liu
85
42
0
03 Feb 2022
Stochastic Neural Networks with Infinite Width are Deterministic
Stochastic Neural Networks with Infinite Width are Deterministic
Liu Ziyin
Hanlin Zhang
Xiangming Meng
Yuting Lu
Eric P. Xing
Masakuni Ueda
93
3
0
30 Jan 2022
DiffuseVAE: Efficient, Controllable and High-Fidelity Generation from
  Low-Dimensional Latents
DiffuseVAE: Efficient, Controllable and High-Fidelity Generation from Low-Dimensional Latents
Kushagra Pandey
Avideep Mukherjee
Piyush Rai
Abhishek Kumar
DiffM
117
121
0
02 Jan 2022
Beta-VAE Reproducibility: Challenges and Extensions
Beta-VAE Reproducibility: Challenges and Extensions
M. Fil
Munib Mesinovic
Matthew Morris
J. Wildberger
DRL
39
9
0
28 Dec 2021
Generating Synthetic Mixed-type Longitudinal Electronic Health Records
  for Artificial Intelligent Applications
Generating Synthetic Mixed-type Longitudinal Electronic Health Records for Artificial Intelligent Applications
Jin Li
B. Cairns
Jingsong Li
T. Zhu
SyDa
87
77
0
22 Dec 2021
High-Resolution Image Synthesis with Latent Diffusion Models
High-Resolution Image Synthesis with Latent Diffusion Models
Robin Rombach
A. Blattmann
Dominik Lorenz
Patrick Esser
Bjorn Ommer
3DV
603
15,845
0
20 Dec 2021
Variational autoencoders in the presence of low-dimensional data:
  landscape and implicit bias
Variational autoencoders in the presence of low-dimensional data: landscape and implicit bias
Frederic Koehler
Viraj Mehta
Chenghui Zhou
Andrej Risteski
DRL
87
13
0
13 Dec 2021
Face Reconstruction with Variational Autoencoder and Face Masks
Face Reconstruction with Variational Autoencoder and Face Masks
Rafael S. Toledo
Eric A. Antonelo
CVBM3DH
17
3
0
03 Dec 2021
Forward Operator Estimation in Generative Models with Kernel Transfer
  Operators
Forward Operator Estimation in Generative Models with Kernel Transfer Operators
Z. Huang
Rudrasis Chakraborty
Vikas Singh
GAN
50
3
0
01 Dec 2021
Generalized Normalizing Flows via Markov Chains
Generalized Normalizing Flows via Markov Chains
Paul Hagemann
J. Hertrich
Gabriele Steidl
BDLDiffMAI4CE
94
25
0
24 Nov 2021
Momentum Contrastive Autoencoder: Using Contrastive Learning for Latent
  Space Distribution Matching in WAE
Momentum Contrastive Autoencoder: Using Contrastive Learning for Latent Space Distribution Matching in WAE
Devansh Arpit
Aadyot Bhatnagar
Huan Wang
Caiming Xiong
40
0
0
19 Oct 2021
Spread Flows for Manifold Modelling
Spread Flows for Manifold Modelling
Mingtian Zhang
Yitong Sun
Chen Zhang
Jingyu Sun
AI4CE
51
2
0
29 Sep 2021
Be More Active! Understanding the Differences between Mean and Sampled
  Representations of Variational Autoencoders
Be More Active! Understanding the Differences between Mean and Sampled Representations of Variational Autoencoders
Lisa Bonheme
M. Grzes
DRL
79
6
0
26 Sep 2021
LDC-VAE: A Latent Distribution Consistency Approach to Variational
  AutoEncoders
LDC-VAE: A Latent Distribution Consistency Approach to Variational AutoEncoders
Xiaoyu Chen
Chen Gong
Qiang He
Xinwen Hou
Yu Liu
72
1
0
22 Sep 2021
Sentence Bottleneck Autoencoders from Transformer Language Models
Sentence Bottleneck Autoencoders from Transformer Language Models
Ivan Montero
Nikolaos Pappas
Noah A. Smith
AI4CE
81
29
0
31 Aug 2021
ImageBART: Bidirectional Context with Multinomial Diffusion for
  Autoregressive Image Synthesis
ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis
Patrick Esser
Robin Rombach
A. Blattmann
Bjorn Ommer
DiffM
110
162
0
19 Aug 2021
SynFace: Face Recognition with Synthetic Data
SynFace: Face Recognition with Synthetic Data
Haibo Qiu
Baosheng Yu
Dihong Gong
Zhifeng Li
Wei Liu
Dacheng Tao
116
129
0
18 Aug 2021
Redatuming physical systems using symmetric autoencoders
Redatuming physical systems using symmetric autoencoders
P. Bharadwaj
Matthew T.C. Li
L. Demanet
56
4
0
05 Aug 2021
Regularising Inverse Problems with Generative Machine Learning Models
Regularising Inverse Problems with Generative Machine Learning Models
Margaret Duff
Neill D. F. Campbell
Matthias Joachim Ehrhardt
GANMedIm
67
38
0
22 Jul 2021
The Effects of Invertibility on the Representational Complexity of
  Encoders in Variational Autoencoders
The Effects of Invertibility on the Representational Complexity of Encoders in Variational Autoencoders
Divyansh Pareek
Andrej Risteski
DRL
50
0
0
09 Jul 2021
Exploring the Latent Space of Autoencoders with Interventional Assays
Exploring the Latent Space of Autoencoders with Interventional Assays
Felix Leeb
Stefan Bauer
M. Besserve
Bernhard Schölkopf
DRL
93
18
0
30 Jun 2021
On the Generative Utility of Cyclic Conditionals
On the Generative Utility of Cyclic Conditionals
Chang-Shu Liu
Haoyue Tang
Tao Qin
Jintao Wang
Tie-Yan Liu
82
3
0
30 Jun 2021
Re-parameterizing VAEs for stability
Re-parameterizing VAEs for stability
David Dehaene
Rémy Brossard
DRL
68
9
0
25 Jun 2021
NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image
  Generation
NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image Generation
Xiaohui Zeng
R. Urtasun
R. Zemel
Sanja Fidler
Renjie Liao
DiffM
36
2
0
25 Jun 2021
Low-rank Characteristic Tensor Density Estimation Part II: Compression
  and Latent Density Estimation
Low-rank Characteristic Tensor Density Estimation Part II: Compression and Latent Density Estimation
Magda Amiridi
Nikos Kargas
N. Sidiropoulos
113
11
0
20 Jun 2021
D2C: Diffusion-Denoising Models for Few-shot Conditional Generation
D2C: Diffusion-Denoising Models for Few-shot Conditional Generation
Abhishek Sinha
Jiaming Song
Chenlin Meng
Stefano Ermon
VLMDiffM
132
121
0
12 Jun 2021
Model Selection for Bayesian Autoencoders
Model Selection for Bayesian Autoencoders
Ba-Hien Tran
Simone Rossi
Dimitrios Milios
Pietro Michiardi
Edwin V. Bonilla
Maurizio Filippone
BDL
82
13
0
11 Jun 2021
Score-based Generative Modeling in Latent Space
Score-based Generative Modeling in Latent Space
Arash Vahdat
Karsten Kreis
Jan Kautz
DiffM
89
688
0
10 Jun 2021
Tractable Density Estimation on Learned Manifolds with Conformal
  Embedding Flows
Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows
Brendan Leigh Ross
Jesse C. Cresswell
TPM
85
32
0
09 Jun 2021
Rectangular Flows for Manifold Learning
Rectangular Flows for Manifold Learning
Anthony L. Caterini
Gabriel Loaiza-Ganem
Geoff Pleiss
John P. Cunningham
DRL
109
47
0
02 Jun 2021
Latent Space Refinement for Deep Generative Models
Latent Space Refinement for Deep Generative Models
R. Winterhalder
Marco Bellagente
Benjamin Nachman
BDLGANDRLDiffM
126
27
0
01 Jun 2021
Data Augmentation in High Dimensional Low Sample Size Setting Using a
  Geometry-Based Variational Autoencoder
Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Clément Chadebec
Elina Thibeau-Sutre
Ninon Burgos
S. Allassonnière
129
69
0
30 Apr 2021
Eccentric Regularization: Minimizing Hyperspherical Energy without
  explicit projection
Eccentric Regularization: Minimizing Hyperspherical Energy without explicit projection
Xuefeng Li
Alan Blair
53
0
0
23 Apr 2021
Geometry-Free View Synthesis: Transformers and no 3D Priors
Geometry-Free View Synthesis: Transformers and no 3D Priors
Robin Rombach
Patrick Esser
Bjorn Ommer
ViT
103
95
0
15 Apr 2021
Neighbor Embedding Variational Autoencoder
Neighbor Embedding Variational Autoencoder
Renfei Tu
Yang Liu
Yongzeng Xue
Cheng Wang
Maozu Guo
BDLDRL
60
0
0
21 Mar 2021
VDSM: Unsupervised Video Disentanglement with State-Space Modeling and
  Deep Mixtures of Experts
VDSM: Unsupervised Video Disentanglement with State-Space Modeling and Deep Mixtures of Experts
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CoGe
87
8
0
12 Mar 2021
A prior-based approximate latent Riemannian metric
A prior-based approximate latent Riemannian metric
Georgios Arvanitidis
B. Georgiev
Bernhard Schölkopf
MedIm
60
13
0
09 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLMTPM
176
508
0
08 Mar 2021
Solving Inverse Problems by Joint Posterior Maximization with
  Autoencoding Prior
Solving Inverse Problems by Joint Posterior Maximization with Autoencoding Prior
Mario González
Andrés Almansa
Pauline Tan
92
31
0
02 Mar 2021
A survey on Variational Autoencoders from a GreenAI perspective
A survey on Variational Autoencoders from a GreenAI perspective
Andrea Asperti
David Evangelista
E. Loli Piccolomini
DRL
91
52
0
01 Mar 2021
Previous
12345
Next