ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.10767
36
2

How good are variational autoencoders at transfer learning?

21 April 2023
Lisa Bonheme
M. Grzes
    OOD
    DRL
ArXivPDFHTML
Abstract

Variational autoencoders (VAEs) are used for transfer learning across various research domains such as music generation or medical image analysis. However, there is no principled way to assess before transfer which components to retrain or whether transfer learning is likely to help on a target task. We propose to explore this question through the lens of representational similarity. Specifically, using Centred Kernel Alignment (CKA) to evaluate the similarity of VAEs trained on different datasets, we show that encoders' representations are generic but decoders' specific. Based on these insights, we discuss the implications for selecting which components of a VAE to retrain and propose a method to visually assess whether transfer learning is likely to help on classification tasks.

View on arXiv
Comments on this paper