Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1903.05789
Cited By
v1
v2 (latest)
Diagnosing and Enhancing VAE Models
14 March 2019
Bin Dai
David Wipf
DRL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Diagnosing and Enhancing VAE Models"
50 / 242 papers shown
Title
VAE Approximation Error: ELBO and Exponential Families
Alexander Shekhovtsov
D. Schlesinger
B. Flach
DRL
68
16
0
18 Feb 2021
Preventing Oversmoothing in VAE via Generalized Variance Parameterization
Yuhta Takida
Wei-Hsiang Liao
Chieh-Hsin Lai
Toshimitsu Uesaka
Shusuke Takahashi
Yuki Mitsufuji
DRL
94
15
0
17 Feb 2021
Achieving Explainability for Plant Disease Classification with Disentangled Variational Autoencoders
Harshana Habaragamuwa
Y. Oishi
Kenichi Tanaka
98
9
0
05 Feb 2021
VAE^2: Preventing Posterior Collapse of Variational Video Predictions in the Wild
Yizhou Zhou
Chong Luo
Xiaoyan Sun
Zhengjun Zha
Wenjun Zeng
VGen
28
2
0
28 Jan 2021
Cauchy-Schwarz Regularized Autoencoder
Linh-Tam Tran
Maja Pantic
M. Deisenroth
DRL
BDL
75
17
0
06 Jan 2021
TrustMAE: A Noise-Resilient Defect Classification Framework using Memory-Augmented Auto-Encoders with Trust Regions
Daniel Stanley Tan
Yi-Chun Chen
Trista Pei-chun Chen
Wei-Chao Chen
UQCV
81
57
0
29 Dec 2020
AVAE: Adversarial Variational Auto Encoder
Antoine Plumerault
Hervé Le Borgne
C´eline Hudelot
GAN
DRL
61
16
0
21 Dec 2020
Taming Transformers for High-Resolution Image Synthesis
Patrick Esser
Robin Rombach
Bjorn Ommer
ViT
141
3,015
0
17 Dec 2020
Fork or Fail: Cycle-Consistent Training with Many-to-One Mappings
Qipeng Guo
Zhijing Jin
Ziyu Wang
Xipeng Qiu
Weinan Zhang
Jun Zhu
Zheng Zhang
David Wipf
65
13
0
14 Dec 2020
Comparison of Anomaly Detectors: Context Matters
V. Škvára
Jan Francå
Matěj Zorek
Tomás Pevný
Václav Smídl
62
9
0
11 Dec 2020
Generative Capacity of Probabilistic Protein Sequence Models
Francisco McGee
Quentin Novinger
R. Levy
Vincenzo Carnevale
A. Haldane
81
34
0
03 Dec 2020
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
R. Child
BDL
VLM
192
353
0
20 Nov 2020
Learning Causal Semantic Representation for Out-of-Distribution Prediction
Chang-Shu Liu
Xinwei Sun
Jindong Wang
Haoyue Tang
Tao Li
Tao Qin
Wei Chen
Tie-Yan Liu
CML
OODD
OOD
153
106
0
03 Nov 2020
ControlVAE: Tuning, Analytical Properties, and Performance Analysis
Huajie Shao
Zhisheng Xiao
Shuochao Yao
Aston Zhang
Shengzhong Liu
Tarek Abdelzaher
DRL
99
16
0
31 Oct 2020
GENs: Generative Encoding Networks
Surojit Saha
Shireen Y. Elhabian
Ross T. Whitaker
GAN
56
9
0
28 Oct 2020
Further Analysis of Outlier Detection with Deep Generative Models
Ziyu Wang
Bin Dai
David Wipf
Jun Zhu
76
40
0
25 Oct 2020
Plug and Play Autoencoders for Conditional Text Generation
Florian Mai
Nikolaos Pappas
Ivan Montero
Noah A. Smith
U. Washington
109
37
0
06 Oct 2020
A Contrastive Learning Approach for Training Variational Autoencoder Priors
J. Aneja
Alex Schwing
Jan Kautz
Arash Vahdat
DRL
122
83
0
06 Oct 2020
Improving Relational Regularized Autoencoders with Spherical Sliced Fused Gromov Wasserstein
Khai Nguyen
S. Nguyen
Nhat Ho
Tung Pham
Hung Bui
117
21
0
05 Oct 2020
VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models
Zhisheng Xiao
Karsten Kreis
Jan Kautz
Arash Vahdat
116
124
0
01 Oct 2020
Disentangled Neural Architecture Search
Xinyue Zheng
Peng Wang
Qigang Wang
Zhongchao Shi
AI4CE
57
4
0
24 Sep 2020
S2SD: Simultaneous Similarity-based Self-Distillation for Deep Metric Learning
Karsten Roth
Timo Milbich
Bjorn Ommer
Joseph Paul Cohen
Marzyeh Ghassemi
FedML
141
17
0
17 Sep 2020
Generative models with kernel distance in data space
Szymon Knop
Marcin Mazur
Przemysław Spurek
Jacek Tabor
Igor T. Podolak
GAN
SyDa
61
11
0
15 Sep 2020
Orientation-Disentangled Unsupervised Representation Learning for Computational Pathology
Maxime W. Lafarge
J. Pluim
M. Veta
DRL
46
8
0
26 Aug 2020
Anomaly localization by modeling perceptual features
David Dehaene
P. Eline
DRL
70
42
0
12 Aug 2020
Making Sense of CNNs: Interpreting Deep Representations & Their Invariances with INNs
Robin Rombach
Patrick Esser
Bjorn Ommer
88
16
0
04 Aug 2020
Quantitative Understanding of VAE as a Non-linearly Scaled Isometric Embedding
Akira Nakagawa
Keizo Kato
Taiji Suzuki
DRL
80
9
0
30 Jul 2020
Generalizing Variational Autoencoders with Hierarchical Empirical Bayes
Wei Cheng
Gregory Darnell
Sohini Ramachandran
Lorin Crawford
BDL
13
2
0
20 Jul 2020
Relaxed-Responsibility Hierarchical Discrete VAEs
M. Willetts
Xenia Miscouridou
Stephen J. Roberts
Chris Holmes
BDL
DRL
86
5
0
14 Jul 2020
Bridging Maximum Likelihood and Adversarial Learning via
α
α
α
-Divergence
Miaoyun Zhao
Yulai Cong
Shuyang Dai
Lawrence Carin
GAN
58
10
0
13 Jul 2020
Self-Reflective Variational Autoencoder
Ifigeneia Apostolopoulou
Elan Rosenfeld
A. Dubrawski
OOD
BDL
DRL
52
0
0
10 Jul 2020
Benefiting Deep Latent Variable Models via Learning the Prior and Removing Latent Regularization
Rogan Morrow
Wei-Chen Chiu
DRL
31
0
0
07 Jul 2020
Sliced Iterative Normalizing Flows
B. Dai
U. Seljak
89
37
0
01 Jul 2020
Simple and Effective VAE Training with Calibrated Decoders
Oleh Rybkin
Kostas Daniilidis
Sergey Levine
105
95
0
23 Jun 2020
Normalizing Flows Across Dimensions
Edmond Cunningham
Renos Zabounidis
Abhinav Agrawal
Ina Fiterau
Daniel Sheldon
DRL
66
26
0
23 Jun 2020
VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data
Chao Ma
Sebastian Tschiatschek
José Miguel Hernández-Lobato
Richard Turner
Cheng Zhang
DRL
VLM
81
69
0
21 Jun 2020
Constraining Variational Inference with Geometric Jensen-Shannon Divergence
J. Deasy
Nikola Simidjievski
Pietro Lio
DRL
91
30
0
18 Jun 2020
Exponential Tilting of Generative Models: Improving Sample Quality by Training and Sampling from Latent Energy
Zhisheng Xiao
Qing Yan
Y. Amit
DRL
53
8
0
15 Jun 2020
Structure by Architecture: Structured Representations without Regularization
Felix Leeb
Giulia Lanzillotta
Yashas Annadani
M. Besserve
Stefan Bauer
Bernhard Schölkopf
OOD
CML
89
8
0
14 Jun 2020
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Javier Antorán
Umang Bhatt
T. Adel
Adrian Weller
José Miguel Hernández-Lobato
UQCV
BDL
110
116
0
11 Jun 2020
End-to-end Sinkhorn Autoencoder with Noise Generator
Kamil Deja
Jan Dubiñski
Piotr W. Nowak
S. Wenzel
Tomasz Trzciñski
SyDa
60
23
0
11 Jun 2020
A Generalised Linear Model Framework for
β
β
β
-Variational Autoencoders based on Exponential Dispersion Families
Robert Sicks
R. Korn
Stefanie Schwaar
68
12
0
11 Jun 2020
To Regularize or Not To Regularize? The Bias Variance Trade-off in Regularized AEs
A. Mondal
Himanshu Asnani
Parag Singla
A. Prathosh
DRL
35
1
0
10 Jun 2020
Probabilistic Autoencoder
Vanessa Böhm
U. Seljak
UQCV
BDL
DRL
81
32
0
09 Jun 2020
Variational Variance: Simple, Reliable, Calibrated Heteroscedastic Noise Variance Parameterization
Andrew Stirn
David A. Knowles
DRL
92
10
0
08 Jun 2020
Network-to-Network Translation with Conditional Invertible Neural Networks
Robin Rombach
Patrick Esser
Bjorn Ommer
40
3
0
27 May 2020
Learning and Inference in Imaginary Noise Models
Saeed Saremi
BDL
DRL
83
2
0
18 May 2020
Data Augmentation for Deep Candlestick Learner
Chia-Ying Tsao
Jun-Hao Chen
Samuel Yen-Chi Chen
Yun-Cheng Tsai
24
1
0
14 May 2020
Jigsaw-VAE: Towards Balancing Features in Variational Autoencoders
Saeid Asgari Taghanaki
Mohammad Havaei
Alex Lamb
Aditya Sanghi
Aram Danielyan
Tonya Custis
DRL
74
7
0
12 May 2020
A Disentangling Invertible Interpretation Network for Explaining Latent Representations
Patrick Esser
Robin Rombach
Bjorn Ommer
62
88
0
27 Apr 2020
Previous
1
2
3
4
5
Next