ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.05789
  4. Cited By
Diagnosing and Enhancing VAE Models
v1v2 (latest)

Diagnosing and Enhancing VAE Models

14 March 2019
Bin Dai
David Wipf
    DRL
ArXiv (abs)PDFHTML

Papers citing "Diagnosing and Enhancing VAE Models"

50 / 242 papers shown
Title
VAE Approximation Error: ELBO and Exponential Families
VAE Approximation Error: ELBO and Exponential Families
Alexander Shekhovtsov
D. Schlesinger
B. Flach
DRL
68
16
0
18 Feb 2021
Preventing Oversmoothing in VAE via Generalized Variance
  Parameterization
Preventing Oversmoothing in VAE via Generalized Variance Parameterization
Yuhta Takida
Wei-Hsiang Liao
Chieh-Hsin Lai
Toshimitsu Uesaka
Shusuke Takahashi
Yuki Mitsufuji
DRL
94
15
0
17 Feb 2021
Achieving Explainability for Plant Disease Classification with
  Disentangled Variational Autoencoders
Achieving Explainability for Plant Disease Classification with Disentangled Variational Autoencoders
Harshana Habaragamuwa
Y. Oishi
Kenichi Tanaka
98
9
0
05 Feb 2021
VAE^2: Preventing Posterior Collapse of Variational Video Predictions in
  the Wild
VAE^2: Preventing Posterior Collapse of Variational Video Predictions in the Wild
Yizhou Zhou
Chong Luo
Xiaoyan Sun
Zhengjun Zha
Wenjun Zeng
VGen
28
2
0
28 Jan 2021
Cauchy-Schwarz Regularized Autoencoder
Cauchy-Schwarz Regularized Autoencoder
Linh-Tam Tran
Maja Pantic
M. Deisenroth
DRLBDL
75
17
0
06 Jan 2021
TrustMAE: A Noise-Resilient Defect Classification Framework using
  Memory-Augmented Auto-Encoders with Trust Regions
TrustMAE: A Noise-Resilient Defect Classification Framework using Memory-Augmented Auto-Encoders with Trust Regions
Daniel Stanley Tan
Yi-Chun Chen
Trista Pei-chun Chen
Wei-Chao Chen
UQCV
81
57
0
29 Dec 2020
AVAE: Adversarial Variational Auto Encoder
AVAE: Adversarial Variational Auto Encoder
Antoine Plumerault
Hervé Le Borgne
C´eline Hudelot
GANDRL
61
16
0
21 Dec 2020
Taming Transformers for High-Resolution Image Synthesis
Taming Transformers for High-Resolution Image Synthesis
Patrick Esser
Robin Rombach
Bjorn Ommer
ViT
141
3,015
0
17 Dec 2020
Fork or Fail: Cycle-Consistent Training with Many-to-One Mappings
Fork or Fail: Cycle-Consistent Training with Many-to-One Mappings
Qipeng Guo
Zhijing Jin
Ziyu Wang
Xipeng Qiu
Weinan Zhang
Jun Zhu
Zheng Zhang
David Wipf
65
13
0
14 Dec 2020
Comparison of Anomaly Detectors: Context Matters
Comparison of Anomaly Detectors: Context Matters
V. Škvára
Jan Francå
Matěj Zorek
Tomás Pevný
Václav Smídl
62
9
0
11 Dec 2020
Generative Capacity of Probabilistic Protein Sequence Models
Generative Capacity of Probabilistic Protein Sequence Models
Francisco McGee
Quentin Novinger
R. Levy
Vincenzo Carnevale
A. Haldane
81
34
0
03 Dec 2020
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them
  on Images
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
R. Child
BDLVLM
192
353
0
20 Nov 2020
Learning Causal Semantic Representation for Out-of-Distribution
  Prediction
Learning Causal Semantic Representation for Out-of-Distribution Prediction
Chang-Shu Liu
Xinwei Sun
Jindong Wang
Haoyue Tang
Tao Li
Tao Qin
Wei Chen
Tie-Yan Liu
CMLOODDOOD
153
106
0
03 Nov 2020
ControlVAE: Tuning, Analytical Properties, and Performance Analysis
ControlVAE: Tuning, Analytical Properties, and Performance Analysis
Huajie Shao
Zhisheng Xiao
Shuochao Yao
Aston Zhang
Shengzhong Liu
Tarek Abdelzaher
DRL
99
16
0
31 Oct 2020
GENs: Generative Encoding Networks
GENs: Generative Encoding Networks
Surojit Saha
Shireen Y. Elhabian
Ross T. Whitaker
GAN
56
9
0
28 Oct 2020
Further Analysis of Outlier Detection with Deep Generative Models
Further Analysis of Outlier Detection with Deep Generative Models
Ziyu Wang
Bin Dai
David Wipf
Jun Zhu
76
40
0
25 Oct 2020
Plug and Play Autoencoders for Conditional Text Generation
Plug and Play Autoencoders for Conditional Text Generation
Florian Mai
Nikolaos Pappas
Ivan Montero
Noah A. Smith
U. Washington
109
37
0
06 Oct 2020
A Contrastive Learning Approach for Training Variational Autoencoder
  Priors
A Contrastive Learning Approach for Training Variational Autoencoder Priors
J. Aneja
Alex Schwing
Jan Kautz
Arash Vahdat
DRL
122
83
0
06 Oct 2020
Improving Relational Regularized Autoencoders with Spherical Sliced
  Fused Gromov Wasserstein
Improving Relational Regularized Autoencoders with Spherical Sliced Fused Gromov Wasserstein
Khai Nguyen
S. Nguyen
Nhat Ho
Tung Pham
Hung Bui
117
21
0
05 Oct 2020
VAEBM: A Symbiosis between Variational Autoencoders and Energy-based
  Models
VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models
Zhisheng Xiao
Karsten Kreis
Jan Kautz
Arash Vahdat
116
124
0
01 Oct 2020
Disentangled Neural Architecture Search
Disentangled Neural Architecture Search
Xinyue Zheng
Peng Wang
Qigang Wang
Zhongchao Shi
AI4CE
57
4
0
24 Sep 2020
S2SD: Simultaneous Similarity-based Self-Distillation for Deep Metric
  Learning
S2SD: Simultaneous Similarity-based Self-Distillation for Deep Metric Learning
Karsten Roth
Timo Milbich
Bjorn Ommer
Joseph Paul Cohen
Marzyeh Ghassemi
FedML
141
17
0
17 Sep 2020
Generative models with kernel distance in data space
Generative models with kernel distance in data space
Szymon Knop
Marcin Mazur
Przemysław Spurek
Jacek Tabor
Igor T. Podolak
GANSyDa
61
11
0
15 Sep 2020
Orientation-Disentangled Unsupervised Representation Learning for
  Computational Pathology
Orientation-Disentangled Unsupervised Representation Learning for Computational Pathology
Maxime W. Lafarge
J. Pluim
M. Veta
DRL
46
8
0
26 Aug 2020
Anomaly localization by modeling perceptual features
Anomaly localization by modeling perceptual features
David Dehaene
P. Eline
DRL
70
42
0
12 Aug 2020
Making Sense of CNNs: Interpreting Deep Representations & Their
  Invariances with INNs
Making Sense of CNNs: Interpreting Deep Representations & Their Invariances with INNs
Robin Rombach
Patrick Esser
Bjorn Ommer
88
16
0
04 Aug 2020
Quantitative Understanding of VAE as a Non-linearly Scaled Isometric
  Embedding
Quantitative Understanding of VAE as a Non-linearly Scaled Isometric Embedding
Akira Nakagawa
Keizo Kato
Taiji Suzuki
DRL
80
9
0
30 Jul 2020
Generalizing Variational Autoencoders with Hierarchical Empirical Bayes
Generalizing Variational Autoencoders with Hierarchical Empirical Bayes
Wei Cheng
Gregory Darnell
Sohini Ramachandran
Lorin Crawford
BDL
13
2
0
20 Jul 2020
Relaxed-Responsibility Hierarchical Discrete VAEs
Relaxed-Responsibility Hierarchical Discrete VAEs
M. Willetts
Xenia Miscouridou
Stephen J. Roberts
Chris Holmes
BDLDRL
86
5
0
14 Jul 2020
Bridging Maximum Likelihood and Adversarial Learning via
  $α$-Divergence
Bridging Maximum Likelihood and Adversarial Learning via ααα-Divergence
Miaoyun Zhao
Yulai Cong
Shuyang Dai
Lawrence Carin
GAN
58
10
0
13 Jul 2020
Self-Reflective Variational Autoencoder
Self-Reflective Variational Autoencoder
Ifigeneia Apostolopoulou
Elan Rosenfeld
A. Dubrawski
OODBDLDRL
52
0
0
10 Jul 2020
Benefiting Deep Latent Variable Models via Learning the Prior and
  Removing Latent Regularization
Benefiting Deep Latent Variable Models via Learning the Prior and Removing Latent Regularization
Rogan Morrow
Wei-Chen Chiu
DRL
31
0
0
07 Jul 2020
Sliced Iterative Normalizing Flows
Sliced Iterative Normalizing Flows
B. Dai
U. Seljak
89
37
0
01 Jul 2020
Simple and Effective VAE Training with Calibrated Decoders
Simple and Effective VAE Training with Calibrated Decoders
Oleh Rybkin
Kostas Daniilidis
Sergey Levine
105
95
0
23 Jun 2020
Normalizing Flows Across Dimensions
Normalizing Flows Across Dimensions
Edmond Cunningham
Renos Zabounidis
Abhinav Agrawal
Ina Fiterau
Daniel Sheldon
DRL
66
26
0
23 Jun 2020
VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data
VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data
Chao Ma
Sebastian Tschiatschek
José Miguel Hernández-Lobato
Richard Turner
Cheng Zhang
DRLVLM
81
69
0
21 Jun 2020
Constraining Variational Inference with Geometric Jensen-Shannon
  Divergence
Constraining Variational Inference with Geometric Jensen-Shannon Divergence
J. Deasy
Nikola Simidjievski
Pietro Lio
DRL
91
30
0
18 Jun 2020
Exponential Tilting of Generative Models: Improving Sample Quality by
  Training and Sampling from Latent Energy
Exponential Tilting of Generative Models: Improving Sample Quality by Training and Sampling from Latent Energy
Zhisheng Xiao
Qing Yan
Y. Amit
DRL
53
8
0
15 Jun 2020
Structure by Architecture: Structured Representations without
  Regularization
Structure by Architecture: Structured Representations without Regularization
Felix Leeb
Giulia Lanzillotta
Yashas Annadani
M. Besserve
Stefan Bauer
Bernhard Schölkopf
OODCML
89
8
0
14 Jun 2020
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Javier Antorán
Umang Bhatt
T. Adel
Adrian Weller
José Miguel Hernández-Lobato
UQCVBDL
110
116
0
11 Jun 2020
End-to-end Sinkhorn Autoencoder with Noise Generator
End-to-end Sinkhorn Autoencoder with Noise Generator
Kamil Deja
Jan Dubiñski
Piotr W. Nowak
S. Wenzel
Tomasz Trzciñski
SyDa
60
23
0
11 Jun 2020
A Generalised Linear Model Framework for $β$-Variational
  Autoencoders based on Exponential Dispersion Families
A Generalised Linear Model Framework for βββ-Variational Autoencoders based on Exponential Dispersion Families
Robert Sicks
R. Korn
Stefanie Schwaar
68
12
0
11 Jun 2020
To Regularize or Not To Regularize? The Bias Variance Trade-off in
  Regularized AEs
To Regularize or Not To Regularize? The Bias Variance Trade-off in Regularized AEs
A. Mondal
Himanshu Asnani
Parag Singla
A. Prathosh
DRL
35
1
0
10 Jun 2020
Probabilistic Autoencoder
Probabilistic Autoencoder
Vanessa Böhm
U. Seljak
UQCVBDLDRL
81
32
0
09 Jun 2020
Variational Variance: Simple, Reliable, Calibrated Heteroscedastic Noise
  Variance Parameterization
Variational Variance: Simple, Reliable, Calibrated Heteroscedastic Noise Variance Parameterization
Andrew Stirn
David A. Knowles
DRL
92
10
0
08 Jun 2020
Network-to-Network Translation with Conditional Invertible Neural
  Networks
Network-to-Network Translation with Conditional Invertible Neural Networks
Robin Rombach
Patrick Esser
Bjorn Ommer
40
3
0
27 May 2020
Learning and Inference in Imaginary Noise Models
Learning and Inference in Imaginary Noise Models
Saeed Saremi
BDLDRL
83
2
0
18 May 2020
Data Augmentation for Deep Candlestick Learner
Data Augmentation for Deep Candlestick Learner
Chia-Ying Tsao
Jun-Hao Chen
Samuel Yen-Chi Chen
Yun-Cheng Tsai
24
1
0
14 May 2020
Jigsaw-VAE: Towards Balancing Features in Variational Autoencoders
Jigsaw-VAE: Towards Balancing Features in Variational Autoencoders
Saeid Asgari Taghanaki
Mohammad Havaei
Alex Lamb
Aditya Sanghi
Aram Danielyan
Tonya Custis
DRL
74
7
0
12 May 2020
A Disentangling Invertible Interpretation Network for Explaining Latent
  Representations
A Disentangling Invertible Interpretation Network for Explaining Latent Representations
Patrick Esser
Robin Rombach
Bjorn Ommer
62
88
0
27 Apr 2020
Previous
12345
Next