Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.08573
Cited By
v1
v2
v3 (latest)
Theoretically Principled Trade-off between Robustness and Accuracy
24 January 2019
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Theoretically Principled Trade-off between Robustness and Accuracy"
50 / 837 papers shown
Title
Measure and Improve Robustness in NLP Models: A Survey
Xuezhi Wang
Haohan Wang
Diyi Yang
300
139
0
15 Dec 2021
Triangle Attack: A Query-efficient Decision-based Adversarial Attack
Xiaosen Wang
Zeliang Zhang
Kangheng Tong
Dihong Gong
Kun He
Zhifeng Li
Wei Liu
AAML
92
62
0
13 Dec 2021
Interpolated Joint Space Adversarial Training for Robust and Generalizable Defenses
Chun Pong Lau
Jiang-Long Liu
Hossein Souri
Wei-An Lin
Soheil Feizi
Ramalingam Chellappa
AAML
81
13
0
12 Dec 2021
Mutual Adversarial Training: Learning together is better than going alone
Jiang-Long Liu
Chun Pong Lau
Hossein Souri
Soheil Feizi
Ramalingam Chellappa
OOD
AAML
74
25
0
09 Dec 2021
Finding Deviated Behaviors of the Compressed DNN Models for Image Classifications
Yongqiang Tian
Wuqi Zhang
Ming Wen
Shing-Chi Cheung
Chengnian Sun
Shiqing Ma
Yu Jiang
90
7
0
06 Dec 2021
Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting
Abdulmajid Murad
F. Kraemer
Kerstin Bach
Gavin Taylor
OOD
BDL
UQCV
40
12
0
05 Dec 2021
ℓ
∞
\ell_\infty
ℓ
∞
-Robustness and Beyond: Unleashing Efficient Adversarial Training
H. M. Dolatabadi
S. Erfani
C. Leckie
OOD
AAML
92
12
0
01 Dec 2021
Pyramid Adversarial Training Improves ViT Performance
Charles Herrmann
Kyle Sargent
Lu Jiang
Ramin Zabih
Huiwen Chang
Ce Liu
Dilip Krishnan
Deqing Sun
ViT
116
59
0
30 Nov 2021
MedRDF: A Robust and Retrain-Less Diagnostic Framework for Medical Pretrained Models Against Adversarial Attack
Mengting Xu
Tao Zhang
Daoqiang Zhang
AAML
MedIm
79
25
0
29 Nov 2021
Subspace Adversarial Training
Tao Li
Yingwen Wu
Sizhe Chen
Kun Fang
Xiaolin Huang
AAML
OOD
108
59
0
24 Nov 2021
Fooling Adversarial Training with Inducing Noise
Zhirui Wang
Yifei Wang
Yisen Wang
73
14
0
19 Nov 2021
A Review of Adversarial Attack and Defense for Classification Methods
Yao Li
Minhao Cheng
Cho-Jui Hsieh
T. C. Lee
AAML
71
69
0
18 Nov 2021
SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness
Jongheon Jeong
Sejun Park
Minkyu Kim
Heung-Chang Lee
Do-Guk Kim
Jinwoo Shin
AAML
85
57
0
17 Nov 2021
Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks
Chen Ma
Xiangyu Guo
Li Chen
Junhai Yong
Yisen Wang
AAML
80
16
0
15 Nov 2021
Understanding the Generalization Benefit of Model Invariance from a Data Perspective
Sicheng Zhu
Bang An
Furong Huang
51
26
0
10 Nov 2021
Data Augmentation Can Improve Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
65
292
0
09 Nov 2021
MixACM: Mixup-Based Robustness Transfer via Distillation of Activated Channel Maps
Muhammad Awais
Fengwei Zhou
Chuanlong Xie
Jiawei Li
Sung-Ho Bae
Zhenguo Li
AAML
84
18
0
09 Nov 2021
Tightening the Approximation Error of Adversarial Risk with Auto Loss Function Search
Pengfei Xia
Ziqiang Li
Bin Li
AAML
121
3
0
09 Nov 2021
DeepSteal: Advanced Model Extractions Leveraging Efficient Weight Stealing in Memories
Adnan Siraj Rakin
Md Hafizul Islam Chowdhuryy
Fan Yao
Deliang Fan
AAML
MIACV
81
117
0
08 Nov 2021
Robust and Information-theoretically Safe Bias Classifier against Adversarial Attacks
Lijia Yu
Xiao-Shan Gao
AAML
109
5
0
08 Nov 2021
Smooth Imitation Learning via Smooth Costs and Smooth Policies
Sapana Chaudhary
Balaraman Ravindran
48
1
0
03 Nov 2021
LTD: Low Temperature Distillation for Robust Adversarial Training
Erh-Chung Chen
Che-Rung Lee
AAML
112
27
0
03 Nov 2021
Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks
Maksym Yatsura
J. H. Metzen
Matthias Hein
OOD
93
14
0
02 Nov 2021
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds
Yujia Huang
Huan Zhang
Yuanyuan Shi
J Zico Kolter
Anima Anandkumar
105
78
0
02 Nov 2021
When Does Contrastive Learning Preserve Adversarial Robustness from Pretraining to Finetuning?
Lijie Fan
Sijia Liu
Pin-Yu Chen
Gaoyuan Zhang
Chuang Gan
AAML
VLM
95
124
0
01 Nov 2021
Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided Curriculum Learning Approach
A. Sarkar
Anirban Sarkar
Sowrya Gali
V. Balasubramanian
AAML
52
7
0
30 Oct 2021
Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks
Hassan Dbouk
Naresh R Shanbhag
AAML
44
7
0
28 Oct 2021
Towards Evaluating the Robustness of Neural Networks Learned by Transduction
Jiefeng Chen
Xi Wu
Yang Guo
Yingyu Liang
S. Jha
ELM
AAML
92
15
0
27 Oct 2021
RoMA: Robust Model Adaptation for Offline Model-based Optimization
Sihyun Yu
SungSoo Ahn
Le Song
Jinwoo Shin
OffRL
95
36
0
27 Oct 2021
A Frequency Perspective of Adversarial Robustness
Shishira R. Maiya
Max Ehrlich
Vatsal Agarwal
Ser-Nam Lim
Tom Goldstein
Abhinav Shrivastava
AAML
72
40
0
26 Oct 2021
Towards A Conceptually Simple Defensive Approach for Few-shot classifiers Against Adversarial Support Samples
Y. Tan
Penny Chong
Jiamei Sun
Ngai-Man Cheung
Yuval Elovici
Alexander Binder
AAML
61
0
0
24 Oct 2021
How and When Adversarial Robustness Transfers in Knowledge Distillation?
Rulin Shao
Ming Zhou
Cor-Paul Bezemer
Cho-Jui Hsieh
AAML
74
19
0
22 Oct 2021
Adversarial robustness for latent models: Revisiting the robust-standard accuracies tradeoff
Adel Javanmard
M. Mehrabi
AAML
71
5
0
22 Oct 2021
Transductive Robust Learning Guarantees
Omar Montasser
Steve Hanneke
Nathan Srebro
63
13
0
20 Oct 2021
A Regularization Method to Improve Adversarial Robustness of Neural Networks for ECG Signal Classification
Linhai Ma
Liang Liang
99
21
0
19 Oct 2021
Improving Robustness using Generated Data
Sven Gowal
Sylvestre-Alvise Rebuffi
Olivia Wiles
Florian Stimberg
D. A. Calian
Timothy A. Mann
122
302
0
18 Oct 2021
DI-AA: An Interpretable White-box Attack for Fooling Deep Neural Networks
Yixiang Wang
Jiqiang Liu
Xiaolin Chang
Jianhua Wang
Ricardo J. Rodríguez
AAML
95
31
0
14 Oct 2021
Parameterizing Activation Functions for Adversarial Robustness
Sihui Dai
Saeed Mahloujifar
Prateek Mittal
AAML
84
32
0
11 Oct 2021
Adversarial Token Attacks on Vision Transformers
Ameya Joshi
Gauri Jagatap
Chinmay Hegde
ViT
99
19
0
08 Oct 2021
Nonconvex-Nonconcave Min-Max Optimization with a Small Maximization Domain
Dmitrii Ostrovskii
Babak Barazandeh
Meisam Razaviyayn
85
12
0
08 Oct 2021
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
139
102
0
07 Oct 2021
Adversarial Attacks on Spiking Convolutional Neural Networks for Event-based Vision
Julian Buchel
Gregor Lenz
Yalun Hu
Sadique Sheik
M. Sorbaro
AAML
92
15
0
06 Oct 2021
Noisy Feature Mixup
Soon Hoe Lim
N. Benjamin Erichson
Francisco Utrera
Winnie Xu
Michael W. Mahoney
AAML
103
38
0
05 Oct 2021
Trustworthy AI: From Principles to Practices
Yue Liu
Peng Qi
Bo Liu
Shuai Di
Jingen Liu
Jiquan Pei
Jinfeng Yi
Bowen Zhou
213
383
0
04 Oct 2021
Calibrated Adversarial Training
Tianjin Huang
Vlado Menkovski
Yulong Pei
Mykola Pechenizkiy
AAML
117
3
0
01 Oct 2021
Introducing the DOME Activation Functions
Mohamed E. Hussein
Wael AbdAlmageed
64
1
0
30 Sep 2021
BulletTrain: Accelerating Robust Neural Network Training via Boundary Example Mining
Weizhe Hua
Yichi Zhang
Chuan Guo
Zhiru Zhang
G. E. Suh
OOD
103
16
0
29 Sep 2021
Unsolved Problems in ML Safety
Dan Hendrycks
Nicholas Carlini
John Schulman
Jacob Steinhardt
285
294
0
28 Sep 2021
Two Souls in an Adversarial Image: Towards Universal Adversarial Example Detection using Multi-view Inconsistency
Sohaib Kiani
S. Awan
Chao Lan
Fengjun Li
Bo Luo
GAN
AAML
44
7
0
25 Sep 2021
Adversarially Regularized Policy Learning Guided by Trajectory Optimization
Zhigen Zhao
Simiao Zuo
T. Zhao
Ye Zhao
79
10
0
16 Sep 2021
Previous
1
2
3
...
8
9
10
...
15
16
17
Next