Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.08573
Cited By
Theoretically Principled Trade-off between Robustness and Accuracy
24 January 2019
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Theoretically Principled Trade-off between Robustness and Accuracy"
50 / 583 papers shown
Title
Robusta: Robust AutoML for Feature Selection via Reinforcement Learning
Xiaoyang Sean Wang
Bo-wen Li
Yibo Jacky Zhang
B. Kailkhura
K. Nahrstedt
18
3
0
15 Jan 2021
Unlearnable Examples: Making Personal Data Unexploitable
Hanxun Huang
Xingjun Ma
S. Erfani
James Bailey
Yisen Wang
MIACV
156
190
0
13 Jan 2021
Understanding and Increasing Efficiency of Frank-Wolfe Adversarial Training
Theodoros Tsiligkaridis
Jay Roberts
AAML
22
11
0
22 Dec 2020
Self-Progressing Robust Training
Minhao Cheng
Pin-Yu Chen
Sijia Liu
Shiyu Chang
Cho-Jui Hsieh
Payel Das
AAML
VLM
29
9
0
22 Dec 2020
On the human-recognizability phenomenon of adversarially trained deep image classifiers
Jonathan W. Helland
Nathan M. VanHoudnos
AAML
27
4
0
18 Dec 2020
A Closer Look at the Robustness of Vision-and-Language Pre-trained Models
Linjie Li
Zhe Gan
Jingjing Liu
VLM
33
42
0
15 Dec 2020
Composite Adversarial Attacks
Xiaofeng Mao
YueFeng Chen
Shuhui Wang
Hang Su
Yuan He
Hui Xue
AAML
33
48
0
10 Dec 2020
Unsupervised Adversarially-Robust Representation Learning on Graphs
Jiarong Xu
Yang Yang
Junru Chen
Chunping Wang
Xin Jiang
Jiangang Lu
Yizhou Sun
SSL
AAML
OOD
35
36
0
04 Dec 2020
FAT: Federated Adversarial Training
Giulio Zizzo
Ambrish Rawat
M. Sinn
Beat Buesser
FedML
33
43
0
03 Dec 2020
Guided Adversarial Attack for Evaluating and Enhancing Adversarial Defenses
Gaurang Sriramanan
Sravanti Addepalli
Arya Baburaj
R. Venkatesh Babu
AAML
28
92
0
30 Nov 2020
A Study on the Uncertainty of Convolutional Layers in Deep Neural Networks
Hao Shen
Sihong Chen
Ran Wang
30
5
0
27 Nov 2020
Learnable Boundary Guided Adversarial Training
Jiequan Cui
Shu Liu
Liwei Wang
Jiaya Jia
OOD
AAML
30
124
0
23 Nov 2020
Recent Advances in Understanding Adversarial Robustness of Deep Neural Networks
Tao Bai
Jinqi Luo
Jun Zhao
AAML
49
8
0
03 Nov 2020
A Single-Loop Smoothed Gradient Descent-Ascent Algorithm for Nonconvex-Concave Min-Max Problems
Jiawei Zhang
Peijun Xiao
Ruoyu Sun
Zhi-Quan Luo
33
97
0
29 Oct 2020
Robustness May Be at Odds with Fairness: An Empirical Study on Class-wise Accuracy
Philipp Benz
Chaoning Zhang
Adil Karjauv
In So Kweon
AAML
24
57
0
26 Oct 2020
Robust Pre-Training by Adversarial Contrastive Learning
Ziyu Jiang
Tianlong Chen
Ting-Li Chen
Zhangyang Wang
30
227
0
26 Oct 2020
Posterior Differential Regularization with f-divergence for Improving Model Robustness
Hao Cheng
Xiaodong Liu
L. Pereira
Yaoliang Yu
Jianfeng Gao
248
31
0
23 Oct 2020
Towards Robust Neural Networks via Orthogonal Diversity
Kun Fang
Qinghua Tao
Yingwen Wu
Tao Li
Jia Cai
Feipeng Cai
Xiaolin Huang
Jie-jin Yang
AAML
41
8
0
23 Oct 2020
Precise Statistical Analysis of Classification Accuracies for Adversarial Training
Adel Javanmard
Mahdi Soltanolkotabi
AAML
33
62
0
21 Oct 2020
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
234
680
0
19 Oct 2020
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
29
48
0
19 Oct 2020
A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack and Learning
Hongjun Wang
Guanbin Li
Xiaobai Liu
Liang Lin
GAN
AAML
21
22
0
15 Oct 2020
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
17
324
0
07 Oct 2020
Adversarial Boot Camp: label free certified robustness in one epoch
Ryan Campbell
Chris Finlay
Adam M. Oberman
AAML
25
0
0
05 Oct 2020
Understanding Catastrophic Overfitting in Single-step Adversarial Training
Hoki Kim
Woojin Lee
Jaewook Lee
AAML
16
108
0
05 Oct 2020
Geometry-aware Instance-reweighted Adversarial Training
Jingfeng Zhang
Jianing Zhu
Gang Niu
Bo Han
Masashi Sugiyama
Mohan Kankanhalli
AAML
47
269
0
05 Oct 2020
Adversarial Robustness of Stabilized NeuralODEs Might be from Obfuscated Gradients
Yifei Huang
Yaodong Yu
Hongyang R. Zhang
Yi Ma
Yuan Yao
AAML
37
26
0
28 Sep 2020
Adversarial Training with Stochastic Weight Average
Joong-won Hwang
Youngwan Lee
Sungchan Oh
Yuseok Bae
OOD
AAML
29
11
0
21 Sep 2020
Label Smoothing and Adversarial Robustness
Chaohao Fu
Hongbin Chen
Na Ruan
Weijia Jia
AAML
16
12
0
17 Sep 2020
Input Hessian Regularization of Neural Networks
Waleed Mustafa
Robert A. Vandermeulen
Marius Kloft
AAML
25
12
0
14 Sep 2020
Defending Against Multiple and Unforeseen Adversarial Videos
Shao-Yuan Lo
Vishal M. Patel
AAML
31
23
0
11 Sep 2020
SoK: Certified Robustness for Deep Neural Networks
Linyi Li
Tao Xie
Bo-wen Li
AAML
33
128
0
09 Sep 2020
Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp Adversarial Attacks
Wei-An Lin
Chun Pong Lau
Alexander Levine
Ramalingam Chellappa
S. Feizi
AAML
81
60
0
05 Sep 2020
Adversarially Robust Neural Architectures
Minjing Dong
Yanxi Li
Yunhe Wang
Chang Xu
AAML
OOD
42
48
0
02 Sep 2020
Vulnerability-Aware Poisoning Mechanism for Online RL with Unknown Dynamics
Yanchao Sun
Da Huo
Furong Huang
AAML
OffRL
OnRL
21
49
0
02 Sep 2020
Addressing Neural Network Robustness with Mixup and Targeted Labeling Adversarial Training
Alfred Laugros
A. Caplier
Matthieu Ospici
AAML
24
19
0
19 Aug 2020
Optimizing Information Loss Towards Robust Neural Networks
Philip Sperl
Konstantin Böttinger
AAML
18
3
0
07 Aug 2020
Practical Detection of Trojan Neural Networks: Data-Limited and Data-Free Cases
Ren Wang
Gaoyuan Zhang
Sijia Liu
Pin-Yu Chen
Jinjun Xiong
Meng Wang
AAML
33
148
0
31 Jul 2020
Stylized Adversarial Defense
Muzammal Naseer
Salman Khan
Munawar Hayat
Fahad Shahbaz Khan
Fatih Porikli
GAN
AAML
28
16
0
29 Jul 2020
Robust Machine Learning via Privacy/Rate-Distortion Theory
Ye Wang
Shuchin Aeron
Adnan Siraj Rakin
T. Koike-Akino
P. Moulin
OOD
22
6
0
22 Jul 2020
Adversarial Training Reduces Information and Improves Transferability
M. Terzi
Alessandro Achille
Marco Maggipinto
Gian Antonio Susto
AAML
24
23
0
22 Jul 2020
Backdoor Learning: A Survey
Yiming Li
Yong Jiang
Zhifeng Li
Shutao Xia
AAML
45
590
0
17 Jul 2020
Do Adversarially Robust ImageNet Models Transfer Better?
Hadi Salman
Andrew Ilyas
Logan Engstrom
Ashish Kapoor
A. Madry
37
417
0
16 Jul 2020
On Adversarial Robustness: A Neural Architecture Search perspective
Chaitanya Devaguptapu
Devansh Agarwal
Gaurav Mittal
Pulkit Gopalani
V. Balasubramanian
OOD
AAML
12
33
0
16 Jul 2020
Robustifying Reinforcement Learning Agents via Action Space Adversarial Training
Kai Liang Tan
Yasaman Esfandiari
Xian Yeow Lee
Aakanksha
S. Sarkar
AAML
26
55
0
14 Jul 2020
Adversarial jamming attacks and defense strategies via adaptive deep reinforcement learning
Feng Wang
Chen Zhong
M. C. Gursoy
Senem Velipasalar
AAML
18
8
0
12 Jul 2020
Beyond Perturbations: Learning Guarantees with Arbitrary Adversarial Test Examples
S. Goldwasser
Adam Tauman Kalai
Y. Kalai
Omar Montasser
AAML
19
38
0
10 Jul 2020
Boundary thickness and robustness in learning models
Yaoqing Yang
Rekha Khanna
Yaodong Yu
A. Gholami
Kurt Keutzer
Joseph E. Gonzalez
Kannan Ramchandran
Michael W. Mahoney
OOD
18
37
0
09 Jul 2020
How benign is benign overfitting?
Amartya Sanyal
P. Dokania
Varun Kanade
Philip Torr
NoLa
AAML
23
57
0
08 Jul 2020
Measuring Robustness to Natural Distribution Shifts in Image Classification
Rohan Taori
Achal Dave
Vaishaal Shankar
Nicholas Carlini
Benjamin Recht
Ludwig Schmidt
OOD
39
536
0
01 Jul 2020
Previous
1
2
3
...
10
11
12
9
Next