Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.08573
Cited By
v1
v2
v3 (latest)
Theoretically Principled Trade-off between Robustness and Accuracy
24 January 2019
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Theoretically Principled Trade-off between Robustness and Accuracy"
50 / 837 papers shown
Title
Adversarial Feature Desensitization
P. Bashivan
Reza Bayat
Adam Ibrahim
Kartik Ahuja
Mojtaba Faramarzi
Touraj Laleh
Blake A. Richards
Irina Rish
AAML
50
21
0
08 Jun 2020
Consistency Regularization for Certified Robustness of Smoothed Classifiers
Jongheon Jeong
Jinwoo Shin
AAML
86
88
0
07 Jun 2020
Principled learning method for Wasserstein distributionally robust optimization with local perturbations
Yongchan Kwon
Wonyoung Hedge Kim
Joong-Ho Won
M. Paik
96
12
0
05 Jun 2020
Second-Order Provable Defenses against Adversarial Attacks
Sahil Singla
Soheil Feizi
AAML
74
60
0
01 Jun 2020
Calibrated Surrogate Losses for Adversarially Robust Classification
Han Bao
Clayton Scott
Masashi Sugiyama
78
46
0
28 May 2020
Stochastic Security: Adversarial Defense Using Long-Run Dynamics of Energy-Based Models
Mitch Hill
Jonathan Mitchell
Song-Chun Zhu
AAML
92
71
0
27 May 2020
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
122
151
0
20 May 2020
Increasing-Margin Adversarial (IMA) Training to Improve Adversarial Robustness of Neural Networks
Linhai Ma
Liang Liang
AAML
137
19
0
19 May 2020
Towards Understanding the Adversarial Vulnerability of Skeleton-based Action Recognition
Tianhang Zheng
Sheng Liu
Changyou Chen
Junsong Yuan
Baochun Li
K. Ren
AAML
83
17
0
14 May 2020
DeepRobust: A PyTorch Library for Adversarial Attacks and Defenses
Yaxin Li
Wei Jin
Han Xu
Jiliang Tang
AAML
90
133
0
13 May 2020
Class-Aware Domain Adaptation for Improving Adversarial Robustness
Xianxu Hou
Jingxin Liu
Bolei Xu
Xiaolong Wang
Bozhi Liu
Guoping Qiu
OOD
AAML
125
9
0
10 May 2020
Adversarial Training against Location-Optimized Adversarial Patches
Sukrut Rao
David Stutz
Bernt Schiele
AAML
84
92
0
05 May 2020
Robust Encodings: A Framework for Combating Adversarial Typos
Erik Jones
Robin Jia
Aditi Raghunathan
Percy Liang
AAML
321
103
0
04 May 2020
Towards Feature Space Adversarial Attack
Qiuling Xu
Guanhong Tao
Shuyang Cheng
Xinming Zhang
GAN
AAML
66
25
0
26 Apr 2020
Improved Adversarial Training via Learned Optimizer
Yuanhao Xiong
Cho-Jui Hsieh
AAML
77
31
0
25 Apr 2020
Adversarial Attacks and Defenses: An Interpretation Perspective
Ninghao Liu
Mengnan Du
Ruocheng Guo
Huan Liu
Helen Zhou
AAML
59
8
0
23 Apr 2020
Single-step Adversarial training with Dropout Scheduling
S. VivekB.
R. Venkatesh Babu
OOD
AAML
65
73
0
18 Apr 2020
Towards Transferable Adversarial Attack against Deep Face Recognition
Yaoyao Zhong
Weihong Deng
AAML
105
162
0
13 Apr 2020
Approximate Manifold Defense Against Multiple Adversarial Perturbations
Jay Nandy
Wynne Hsu
Mong Li Lee
AAML
65
12
0
05 Apr 2020
Towards Deep Learning Models Resistant to Large Perturbations
Amirreza Shaeiri
Rozhin Nobahari
M. Rohban
OOD
AAML
81
12
0
30 Mar 2020
Adversarial Robustness: From Self-Supervised Pre-Training to Fine-Tuning
Tianlong Chen
Sijia Liu
Shiyu Chang
Yu Cheng
Lisa Amini
Zhangyang Wang
AAML
71
250
0
28 Mar 2020
DP-Net: Dynamic Programming Guided Deep Neural Network Compression
Dingcheng Yang
Wenjian Yu
Ao Zhou
Haoyuan Mu
G. Yao
Xiaoyi Wang
35
6
0
21 Mar 2020
Adversarial Robustness on In- and Out-Distribution Improves Explainability
Maximilian Augustin
Alexander Meinke
Matthias Hein
OOD
191
102
0
20 Mar 2020
One Neuron to Fool Them All
Anshuman Suri
David Evans
AAML
31
4
0
20 Mar 2020
Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations
Huan Zhang
Hongge Chen
Chaowei Xiao
Yue Liu
Mingyan D. Liu
Duane S. Boning
Cho-Jui Hsieh
AAML
176
275
0
19 Mar 2020
SAT: Improving Adversarial Training via Curriculum-Based Loss Smoothing
Chawin Sitawarin
S. Chakraborty
David Wagner
AAML
74
40
0
18 Mar 2020
Toward Adversarial Robustness via Semi-supervised Robust Training
Yiming Li
Baoyuan Wu
Yan Feng
Yanbo Fan
Yong Jiang
Zhifeng Li
Shutao Xia
AAML
121
13
0
16 Mar 2020
Diversity can be Transferred: Output Diversification for White- and Black-box Attacks
Y. Tashiro
Yang Song
Stefano Ermon
AAML
81
13
0
15 Mar 2020
On the benefits of defining vicinal distributions in latent space
Puneet Mangla
Vedant Singh
Shreyas Jayant Havaldar
V. Balasubramanian
AAML
21
3
0
14 Mar 2020
Manifold Regularization for Locally Stable Deep Neural Networks
Charles Jin
Martin Rinard
AAML
91
15
0
09 Mar 2020
Adversarial Vertex Mixup: Toward Better Adversarially Robust Generalization
Saehyung Lee
Hyungyu Lee
Sungroh Yoon
AAML
252
119
0
05 Mar 2020
A Closer Look at Accuracy vs. Robustness
Yao-Yuan Yang
Cyrus Rashtchian
Hongyang R. Zhang
Ruslan Salakhutdinov
Kamalika Chaudhuri
OOD
145
26
0
05 Mar 2020
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
281
1,864
0
03 Mar 2020
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
129
67
0
02 Mar 2020
Sparsity Meets Robustness: Channel Pruning for the Feynman-Kac Formalism Principled Robust Deep Neural Nets
Thu Dinh
Bao Wang
Andrea L. Bertozzi
Stanley J. Osher
AAML
34
17
0
02 Mar 2020
Understanding the Intrinsic Robustness of Image Distributions using Conditional Generative Models
Xiao Zhang
Jinghui Chen
Quanquan Gu
David Evans
76
17
0
01 Mar 2020
On Isometry Robustness of Deep 3D Point Cloud Models under Adversarial Attacks
Yue Zhao
Yuwei Wu
Caihua Chen
A. Lim
3DPC
97
72
0
27 Feb 2020
Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization
Sicheng Zhu
Xiao Zhang
David Evans
SSL
OOD
93
27
0
26 Feb 2020
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
159
811
0
26 Feb 2020
Can we have it all? On the Trade-off between Spatial and Adversarial Robustness of Neural Networks
Sandesh Kamath
Amit Deshpande
Subrahmanyam Kambhampati Venkata
V. Balasubramanian
88
12
0
26 Feb 2020
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
62
406
0
26 Feb 2020
The Curious Case of Adversarially Robust Models: More Data Can Help, Double Descend, or Hurt Generalization
Yifei Min
Lin Chen
Amin Karbasi
AAML
103
69
0
25 Feb 2020
Understanding and Mitigating the Tradeoff Between Robustness and Accuracy
Aditi Raghunathan
Sang Michael Xie
Fanny Yang
John C. Duchi
Percy Liang
AAML
104
229
0
25 Feb 2020
HYDRA: Pruning Adversarially Robust Neural Networks
Vikash Sehwag
Shiqi Wang
Prateek Mittal
Suman Jana
AAML
69
25
0
24 Feb 2020
Precise Tradeoffs in Adversarial Training for Linear Regression
Adel Javanmard
Mahdi Soltanolkotabi
Hamed Hassani
AAML
83
109
0
24 Feb 2020
Triple Wins: Boosting Accuracy, Robustness and Efficiency Together by Enabling Input-Adaptive Inference
Ting-Kuei Hu
Tianlong Chen
Haotao Wang
Zhangyang Wang
OOD
AAML
3DH
95
84
0
24 Feb 2020
Robustness from Simple Classifiers
Sharon Qian
Dimitris Kalimeris
Gal Kaplun
Yaron Singer
AAML
18
1
0
21 Feb 2020
MaxUp: A Simple Way to Improve Generalization of Neural Network Training
Chengyue Gong
Zhaolin Ren
Mao Ye
Qiang Liu
AAML
77
56
0
20 Feb 2020
Boosting Adversarial Training with Hypersphere Embedding
Tianyu Pang
Xiao Yang
Yinpeng Dong
Kun Xu
Jun Zhu
Hang Su
AAML
89
156
0
20 Feb 2020
Regularized Training and Tight Certification for Randomized Smoothed Classifier with Provable Robustness
Huijie Feng
Chunpeng Wu
Guoyang Chen
Weifeng Zhang
Y. Ning
AAML
71
11
0
17 Feb 2020
Previous
1
2
3
...
14
15
16
17
Next