Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.08573
Cited By
v1
v2
v3 (latest)
Theoretically Principled Trade-off between Robustness and Accuracy
24 January 2019
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Theoretically Principled Trade-off between Robustness and Accuracy"
50 / 837 papers shown
Title
GRAPHITE: Generating Automatic Physical Examples for Machine-Learning Attacks on Computer Vision Systems
Ryan Feng
Neal Mangaokar
Jiefeng Chen
Earlence Fernandes
S. Jha
Atul Prakash
OOD
AAML
43
11
0
17 Feb 2020
CAT: Customized Adversarial Training for Improved Robustness
Minhao Cheng
Qi Lei
Pin-Yu Chen
Inderjit Dhillon
Cho-Jui Hsieh
OOD
AAML
99
117
0
17 Feb 2020
Adversarial Distributional Training for Robust Deep Learning
Yinpeng Dong
Zhijie Deng
Tianyu Pang
Hang Su
Jun Zhu
OOD
96
123
0
14 Feb 2020
More Data Can Expand the Generalization Gap Between Adversarially Robust and Standard Models
Lin Chen
Yifei Min
Mingrui Zhang
Amin Karbasi
OOD
88
64
0
11 Feb 2020
Robustness of Bayesian Neural Networks to Gradient-Based Attacks
Ginevra Carbone
Matthew Wicker
Luca Laurenti
A. Patané
Luca Bortolussi
G. Sanguinetti
AAML
104
79
0
11 Feb 2020
Random Smoothing Might be Unable to Certify
ℓ
∞
\ell_\infty
ℓ
∞
Robustness for High-Dimensional Images
Avrim Blum
Travis Dick
N. Manoj
Hongyang R. Zhang
AAML
78
79
0
10 Feb 2020
Robust binary classification with the 01 loss
Yunzhe Xue
Meiyan Xie
Usman Roshan
OOD
24
1
0
09 Feb 2020
MACER: Attack-free and Scalable Robust Training via Maximizing Certified Radius
Runtian Zhai
Chen Dan
Di He
Huan Zhang
Boqing Gong
Pradeep Ravikumar
Cho-Jui Hsieh
Liwei Wang
OOD
AAML
111
178
0
08 Jan 2020
Efficient Adversarial Training with Transferable Adversarial Examples
Haizhong Zheng
Ziqi Zhang
Juncheng Gu
Honglak Lee
A. Prakash
AAML
80
109
0
27 Dec 2019
Benchmarking Adversarial Robustness
Yinpeng Dong
Qi-An Fu
Xiao Yang
Tianyu Pang
Hang Su
Zihao Xiao
Jun Zhu
AAML
108
36
0
26 Dec 2019
Jacobian Adversarially Regularized Networks for Robustness
Alvin Chan
Yi Tay
Yew-Soon Ong
Jie Fu
AAML
92
76
0
21 Dec 2019
Making Better Mistakes: Leveraging Class Hierarchies with Deep Networks
Luca Bertinetto
Romain Mueller
Konstantinos Tertikas
Sina Samangooei
Nicholas A. Lord
OOD
198
138
0
19 Dec 2019
Malware Makeover: Breaking ML-based Static Analysis by Modifying Executable Bytes
Keane Lucas
Mahmood Sharif
Lujo Bauer
Michael K. Reiter
S. Shintre
AAML
91
68
0
19 Dec 2019
What it Thinks is Important is Important: Robustness Transfers through Input Gradients
Alvin Chan
Yi Tay
Yew-Soon Ong
AAML
OOD
79
52
0
11 Dec 2019
VideoDG: Generalizing Temporal Relations in Videos to Novel Domains
Zhiyu Yao
Yunbo Wang
Jianmin Wang
Philip S. Yu
Mingsheng Long
OOD
ViT
73
26
0
08 Dec 2019
Achieving Robustness in the Wild via Adversarial Mixing with Disentangled Representations
Sven Gowal
Chongli Qin
Po-Sen Huang
taylan. cemgil
Krishnamurthy Dvijotham
Timothy A. Mann
Pushmeet Kohli
AAML
OOD
76
57
0
06 Dec 2019
Less Is Better: Unweighted Data Subsampling via Influence Function
Zifeng Wang
Hong Zhu
Zhenhua Dong
Xiuqiang He
Shao-Lun Huang
TDI
94
54
0
03 Dec 2019
Design and Interpretation of Universal Adversarial Patches in Face Detection
Xiao Yang
Fangyun Wei
Hongyang R. Zhang
Jun Zhu
AAML
CVBM
130
43
0
30 Nov 2019
Square Attack: a query-efficient black-box adversarial attack via random search
Maksym Andriushchenko
Francesco Croce
Nicolas Flammarion
Matthias Hein
AAML
151
997
0
29 Nov 2019
Playing it Safe: Adversarial Robustness with an Abstain Option
Cassidy Laidlaw
Soheil Feizi
AAML
75
20
0
25 Nov 2019
One Man's Trash is Another Man's Treasure: Resisting Adversarial Examples by Adversarial Examples
Chang Xiao
Changxi Zheng
AAML
74
19
0
25 Nov 2019
When NAS Meets Robustness: In Search of Robust Architectures against Adversarial Attacks
Minghao Guo
Yuzhe Yang
Rui Xu
Ziwei Liu
Dahua Lin
AAML
OOD
118
159
0
25 Nov 2019
Adversarial Examples Improve Image Recognition
Cihang Xie
Mingxing Tan
Boqing Gong
Jiang Wang
Alan Yuille
Quoc V. Le
AAML
168
567
0
21 Nov 2019
Patch-level Neighborhood Interpolation: A General and Effective Graph-based Regularization Strategy
Ke Sun
Bin Yu
Zhouchen Lin
Zhanxing Zhu
129
5
0
21 Nov 2019
Defensive Few-shot Learning
Wenbin Li
Lei Wang
Xingxing Zhang
Lei Qi
Jing Huo
Yang Gao
Jiebo Luo
83
7
0
16 Nov 2019
SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization
Haoming Jiang
Pengcheng He
Weizhu Chen
Xiaodong Liu
Jianfeng Gao
T. Zhao
137
563
0
08 Nov 2019
Adversarial Defense via Local Flatness Regularization
Jia Xu
Yiming Li
Yong Jiang
Shutao Xia
AAML
103
18
0
27 Oct 2019
An Alternative Surrogate Loss for PGD-based Adversarial Testing
Sven Gowal
J. Uesato
Chongli Qin
Po-Sen Huang
Timothy A. Mann
Pushmeet Kohli
AAML
107
90
0
21 Oct 2019
A Fast Saddle-Point Dynamical System Approach to Robust Deep Learning
Yasaman Esfandiari
Aditya Balu
K. Ebrahimi
Umesh Vaidya
N. Elia
Soumik Sarkar
OOD
59
3
0
18 Oct 2019
Instance adaptive adversarial training: Improved accuracy tradeoffs in neural nets
Yogesh Balaji
Tom Goldstein
Judy Hoffman
AAML
205
103
0
17 Oct 2019
Extracting robust and accurate features via a robust information bottleneck
Ankit Pensia
Varun Jog
Po-Ling Loh
AAML
71
21
0
15 Oct 2019
Confidence-Calibrated Adversarial Training: Generalizing to Unseen Attacks
David Stutz
Matthias Hein
Bernt Schiele
AAML
89
5
0
14 Oct 2019
Noise as a Resource for Learning in Knowledge Distillation
Elahe Arani
F. Sarfraz
Bahram Zonooz
57
6
0
11 Oct 2019
Improved Sample Complexities for Deep Networks and Robust Classification via an All-Layer Margin
Colin Wei
Tengyu Ma
AAML
OOD
92
85
0
09 Oct 2019
Test-Time Training with Self-Supervision for Generalization under Distribution Shifts
Yu Sun
Xiaolong Wang
Zhuang Liu
John Miller
Alexei A. Efros
Moritz Hardt
TTA
OOD
97
96
0
29 Sep 2019
Impact of Low-bitwidth Quantization on the Adversarial Robustness for Embedded Neural Networks
Rémi Bernhard
Pierre-Alain Moëllic
J. Dutertre
AAML
MQ
89
18
0
27 Sep 2019
Lower Bounds on Adversarial Robustness from Optimal Transport
A. Bhagoji
Daniel Cullina
Prateek Mittal
OOD
OT
AAML
70
94
0
26 Sep 2019
Mixup Inference: Better Exploiting Mixup to Defend Adversarial Attacks
Tianyu Pang
Kun Xu
Jun Zhu
AAML
91
105
0
25 Sep 2019
Robust Local Features for Improving the Generalization of Adversarial Training
Chuanbiao Song
Kun He
Jiadong Lin
Liwei Wang
John E. Hopcroft
OOD
AAML
75
70
0
23 Sep 2019
Adversarial Attacks and Defenses in Images, Graphs and Text: A Review
Han Xu
Yao Ma
Haochen Liu
Debayan Deb
Hui Liu
Jiliang Tang
Anil K. Jain
AAML
79
680
0
17 Sep 2019
Metric Learning for Adversarial Robustness
Chengzhi Mao
Ziyuan Zhong
Junfeng Yang
Carl Vondrick
Baishakhi Ray
OOD
94
188
0
03 Sep 2019
Unlearn Dataset Bias in Natural Language Inference by Fitting the Residual
He He
Sheng Zha
Haohan Wang
88
199
0
28 Aug 2019
Improving Adversarial Robustness via Attention and Adversarial Logit Pairing
Dou Goodman
Xingjian Li
Ji Liu
Jun Huan
Tao Wei
AAML
40
7
0
23 Aug 2019
Graph Interpolating Activation Improves Both Natural and Robust Accuracies in Data-Efficient Deep Learning
Bao Wang
Stanley J. Osher
AAML
AI4CE
77
10
0
16 Jul 2019
Adversarial Robustness through Local Linearization
Chongli Qin
James Martens
Sven Gowal
Dilip Krishnan
Krishnamurthy Dvijotham
Alhussein Fawzi
Soham De
Robert Stanforth
Pushmeet Kohli
AAML
92
308
0
04 Jul 2019
Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack
Francesco Croce
Matthias Hein
AAML
137
493
0
03 Jul 2019
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Mantas Mazeika
Saurav Kadavath
Basel Alomair
OOD
SSL
69
953
0
28 Jun 2019
Invariance-inducing regularization using worst-case transformations suffices to boost accuracy and spatial robustness
Fanny Yang
Zuowen Wang
C. Heinze-Deml
126
42
0
26 Jun 2019
Improving performance of deep learning models with axiomatic attribution priors and expected gradients
G. Erion
Joseph D. Janizek
Pascal Sturmfels
Scott M. Lundberg
Su-In Lee
OOD
BDL
FAtt
95
82
0
25 Jun 2019
Interpolated Adversarial Training: Achieving Robust Neural Networks without Sacrificing Too Much Accuracy
Alex Lamb
Vikas Verma
Kenji Kawaguchi
Alexander Matyasko
Savya Khosla
Arno Solin
Yoshua Bengio
AAML
70
99
0
16 Jun 2019
Previous
1
2
3
...
15
16
17
Next