ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.08573
  4. Cited By
Theoretically Principled Trade-off between Robustness and Accuracy
v1v2v3 (latest)

Theoretically Principled Trade-off between Robustness and Accuracy

24 January 2019
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
ArXiv (abs)PDFHTML

Papers citing "Theoretically Principled Trade-off between Robustness and Accuracy"

50 / 837 papers shown
Title
GRAPHITE: Generating Automatic Physical Examples for Machine-Learning
  Attacks on Computer Vision Systems
GRAPHITE: Generating Automatic Physical Examples for Machine-Learning Attacks on Computer Vision Systems
Ryan Feng
Neal Mangaokar
Jiefeng Chen
Earlence Fernandes
S. Jha
Atul Prakash
OODAAML
43
11
0
17 Feb 2020
CAT: Customized Adversarial Training for Improved Robustness
CAT: Customized Adversarial Training for Improved Robustness
Minhao Cheng
Qi Lei
Pin-Yu Chen
Inderjit Dhillon
Cho-Jui Hsieh
OODAAML
99
117
0
17 Feb 2020
Adversarial Distributional Training for Robust Deep Learning
Adversarial Distributional Training for Robust Deep Learning
Yinpeng Dong
Zhijie Deng
Tianyu Pang
Hang Su
Jun Zhu
OOD
96
123
0
14 Feb 2020
More Data Can Expand the Generalization Gap Between Adversarially Robust
  and Standard Models
More Data Can Expand the Generalization Gap Between Adversarially Robust and Standard Models
Lin Chen
Yifei Min
Mingrui Zhang
Amin Karbasi
OOD
88
64
0
11 Feb 2020
Robustness of Bayesian Neural Networks to Gradient-Based Attacks
Robustness of Bayesian Neural Networks to Gradient-Based Attacks
Ginevra Carbone
Matthew Wicker
Luca Laurenti
A. Patané
Luca Bortolussi
G. Sanguinetti
AAML
104
79
0
11 Feb 2020
Random Smoothing Might be Unable to Certify $\ell_\infty$ Robustness for
  High-Dimensional Images
Random Smoothing Might be Unable to Certify ℓ∞\ell_\inftyℓ∞​ Robustness for High-Dimensional Images
Avrim Blum
Travis Dick
N. Manoj
Hongyang R. Zhang
AAML
78
79
0
10 Feb 2020
Robust binary classification with the 01 loss
Robust binary classification with the 01 loss
Yunzhe Xue
Meiyan Xie
Usman Roshan
OOD
24
1
0
09 Feb 2020
MACER: Attack-free and Scalable Robust Training via Maximizing Certified
  Radius
MACER: Attack-free and Scalable Robust Training via Maximizing Certified Radius
Runtian Zhai
Chen Dan
Di He
Huan Zhang
Boqing Gong
Pradeep Ravikumar
Cho-Jui Hsieh
Liwei Wang
OODAAML
111
178
0
08 Jan 2020
Efficient Adversarial Training with Transferable Adversarial Examples
Efficient Adversarial Training with Transferable Adversarial Examples
Haizhong Zheng
Ziqi Zhang
Juncheng Gu
Honglak Lee
A. Prakash
AAML
80
109
0
27 Dec 2019
Benchmarking Adversarial Robustness
Benchmarking Adversarial Robustness
Yinpeng Dong
Qi-An Fu
Xiao Yang
Tianyu Pang
Hang Su
Zihao Xiao
Jun Zhu
AAML
108
36
0
26 Dec 2019
Jacobian Adversarially Regularized Networks for Robustness
Jacobian Adversarially Regularized Networks for Robustness
Alvin Chan
Yi Tay
Yew-Soon Ong
Jie Fu
AAML
92
76
0
21 Dec 2019
Making Better Mistakes: Leveraging Class Hierarchies with Deep Networks
Making Better Mistakes: Leveraging Class Hierarchies with Deep Networks
Luca Bertinetto
Romain Mueller
Konstantinos Tertikas
Sina Samangooei
Nicholas A. Lord
OOD
198
138
0
19 Dec 2019
Malware Makeover: Breaking ML-based Static Analysis by Modifying
  Executable Bytes
Malware Makeover: Breaking ML-based Static Analysis by Modifying Executable Bytes
Keane Lucas
Mahmood Sharif
Lujo Bauer
Michael K. Reiter
S. Shintre
AAML
91
68
0
19 Dec 2019
What it Thinks is Important is Important: Robustness Transfers through
  Input Gradients
What it Thinks is Important is Important: Robustness Transfers through Input Gradients
Alvin Chan
Yi Tay
Yew-Soon Ong
AAMLOOD
79
52
0
11 Dec 2019
VideoDG: Generalizing Temporal Relations in Videos to Novel Domains
VideoDG: Generalizing Temporal Relations in Videos to Novel Domains
Zhiyu Yao
Yunbo Wang
Jianmin Wang
Philip S. Yu
Mingsheng Long
OODViT
73
26
0
08 Dec 2019
Achieving Robustness in the Wild via Adversarial Mixing with
  Disentangled Representations
Achieving Robustness in the Wild via Adversarial Mixing with Disentangled Representations
Sven Gowal
Chongli Qin
Po-Sen Huang
taylan. cemgil
Krishnamurthy Dvijotham
Timothy A. Mann
Pushmeet Kohli
AAMLOOD
76
57
0
06 Dec 2019
Less Is Better: Unweighted Data Subsampling via Influence Function
Less Is Better: Unweighted Data Subsampling via Influence Function
Zifeng Wang
Hong Zhu
Zhenhua Dong
Xiuqiang He
Shao-Lun Huang
TDI
94
54
0
03 Dec 2019
Design and Interpretation of Universal Adversarial Patches in Face
  Detection
Design and Interpretation of Universal Adversarial Patches in Face Detection
Xiao Yang
Fangyun Wei
Hongyang R. Zhang
Jun Zhu
AAMLCVBM
130
43
0
30 Nov 2019
Square Attack: a query-efficient black-box adversarial attack via random
  search
Square Attack: a query-efficient black-box adversarial attack via random search
Maksym Andriushchenko
Francesco Croce
Nicolas Flammarion
Matthias Hein
AAML
151
997
0
29 Nov 2019
Playing it Safe: Adversarial Robustness with an Abstain Option
Playing it Safe: Adversarial Robustness with an Abstain Option
Cassidy Laidlaw
Soheil Feizi
AAML
75
20
0
25 Nov 2019
One Man's Trash is Another Man's Treasure: Resisting Adversarial
  Examples by Adversarial Examples
One Man's Trash is Another Man's Treasure: Resisting Adversarial Examples by Adversarial Examples
Chang Xiao
Changxi Zheng
AAML
74
19
0
25 Nov 2019
When NAS Meets Robustness: In Search of Robust Architectures against
  Adversarial Attacks
When NAS Meets Robustness: In Search of Robust Architectures against Adversarial Attacks
Minghao Guo
Yuzhe Yang
Rui Xu
Ziwei Liu
Dahua Lin
AAMLOOD
118
159
0
25 Nov 2019
Adversarial Examples Improve Image Recognition
Adversarial Examples Improve Image Recognition
Cihang Xie
Mingxing Tan
Boqing Gong
Jiang Wang
Alan Yuille
Quoc V. Le
AAML
168
567
0
21 Nov 2019
Patch-level Neighborhood Interpolation: A General and Effective
  Graph-based Regularization Strategy
Patch-level Neighborhood Interpolation: A General and Effective Graph-based Regularization Strategy
Ke Sun
Bin Yu
Zhouchen Lin
Zhanxing Zhu
129
5
0
21 Nov 2019
Defensive Few-shot Learning
Defensive Few-shot Learning
Wenbin Li
Lei Wang
Xingxing Zhang
Lei Qi
Jing Huo
Yang Gao
Jiebo Luo
83
7
0
16 Nov 2019
SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language
  Models through Principled Regularized Optimization
SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization
Haoming Jiang
Pengcheng He
Weizhu Chen
Xiaodong Liu
Jianfeng Gao
T. Zhao
137
563
0
08 Nov 2019
Adversarial Defense via Local Flatness Regularization
Adversarial Defense via Local Flatness Regularization
Jia Xu
Yiming Li
Yong Jiang
Shutao Xia
AAML
103
18
0
27 Oct 2019
An Alternative Surrogate Loss for PGD-based Adversarial Testing
An Alternative Surrogate Loss for PGD-based Adversarial Testing
Sven Gowal
J. Uesato
Chongli Qin
Po-Sen Huang
Timothy A. Mann
Pushmeet Kohli
AAML
107
90
0
21 Oct 2019
A Fast Saddle-Point Dynamical System Approach to Robust Deep Learning
A Fast Saddle-Point Dynamical System Approach to Robust Deep Learning
Yasaman Esfandiari
Aditya Balu
K. Ebrahimi
Umesh Vaidya
N. Elia
Soumik Sarkar
OOD
59
3
0
18 Oct 2019
Instance adaptive adversarial training: Improved accuracy tradeoffs in
  neural nets
Instance adaptive adversarial training: Improved accuracy tradeoffs in neural nets
Yogesh Balaji
Tom Goldstein
Judy Hoffman
AAML
205
103
0
17 Oct 2019
Extracting robust and accurate features via a robust information
  bottleneck
Extracting robust and accurate features via a robust information bottleneck
Ankit Pensia
Varun Jog
Po-Ling Loh
AAML
71
21
0
15 Oct 2019
Confidence-Calibrated Adversarial Training: Generalizing to Unseen
  Attacks
Confidence-Calibrated Adversarial Training: Generalizing to Unseen Attacks
David Stutz
Matthias Hein
Bernt Schiele
AAML
89
5
0
14 Oct 2019
Noise as a Resource for Learning in Knowledge Distillation
Noise as a Resource for Learning in Knowledge Distillation
Elahe Arani
F. Sarfraz
Bahram Zonooz
57
6
0
11 Oct 2019
Improved Sample Complexities for Deep Networks and Robust Classification
  via an All-Layer Margin
Improved Sample Complexities for Deep Networks and Robust Classification via an All-Layer Margin
Colin Wei
Tengyu Ma
AAMLOOD
92
85
0
09 Oct 2019
Test-Time Training with Self-Supervision for Generalization under
  Distribution Shifts
Test-Time Training with Self-Supervision for Generalization under Distribution Shifts
Yu Sun
Xiaolong Wang
Zhuang Liu
John Miller
Alexei A. Efros
Moritz Hardt
TTAOOD
97
96
0
29 Sep 2019
Impact of Low-bitwidth Quantization on the Adversarial Robustness for
  Embedded Neural Networks
Impact of Low-bitwidth Quantization on the Adversarial Robustness for Embedded Neural Networks
Rémi Bernhard
Pierre-Alain Moëllic
J. Dutertre
AAMLMQ
89
18
0
27 Sep 2019
Lower Bounds on Adversarial Robustness from Optimal Transport
Lower Bounds on Adversarial Robustness from Optimal Transport
A. Bhagoji
Daniel Cullina
Prateek Mittal
OODOTAAML
70
94
0
26 Sep 2019
Mixup Inference: Better Exploiting Mixup to Defend Adversarial Attacks
Mixup Inference: Better Exploiting Mixup to Defend Adversarial Attacks
Tianyu Pang
Kun Xu
Jun Zhu
AAML
91
105
0
25 Sep 2019
Robust Local Features for Improving the Generalization of Adversarial
  Training
Robust Local Features for Improving the Generalization of Adversarial Training
Chuanbiao Song
Kun He
Jiadong Lin
Liwei Wang
John E. Hopcroft
OODAAML
75
70
0
23 Sep 2019
Adversarial Attacks and Defenses in Images, Graphs and Text: A Review
Adversarial Attacks and Defenses in Images, Graphs and Text: A Review
Han Xu
Yao Ma
Haochen Liu
Debayan Deb
Hui Liu
Jiliang Tang
Anil K. Jain
AAML
79
680
0
17 Sep 2019
Metric Learning for Adversarial Robustness
Metric Learning for Adversarial Robustness
Chengzhi Mao
Ziyuan Zhong
Junfeng Yang
Carl Vondrick
Baishakhi Ray
OOD
94
188
0
03 Sep 2019
Unlearn Dataset Bias in Natural Language Inference by Fitting the
  Residual
Unlearn Dataset Bias in Natural Language Inference by Fitting the Residual
He He
Sheng Zha
Haohan Wang
88
199
0
28 Aug 2019
Improving Adversarial Robustness via Attention and Adversarial Logit
  Pairing
Improving Adversarial Robustness via Attention and Adversarial Logit Pairing
Dou Goodman
Xingjian Li
Ji Liu
Jun Huan
Tao Wei
AAML
40
7
0
23 Aug 2019
Graph Interpolating Activation Improves Both Natural and Robust
  Accuracies in Data-Efficient Deep Learning
Graph Interpolating Activation Improves Both Natural and Robust Accuracies in Data-Efficient Deep Learning
Bao Wang
Stanley J. Osher
AAMLAI4CE
77
10
0
16 Jul 2019
Adversarial Robustness through Local Linearization
Adversarial Robustness through Local Linearization
Chongli Qin
James Martens
Sven Gowal
Dilip Krishnan
Krishnamurthy Dvijotham
Alhussein Fawzi
Soham De
Robert Stanforth
Pushmeet Kohli
AAML
92
308
0
04 Jul 2019
Minimally distorted Adversarial Examples with a Fast Adaptive Boundary
  Attack
Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack
Francesco Croce
Matthias Hein
AAML
137
493
0
03 Jul 2019
Using Self-Supervised Learning Can Improve Model Robustness and
  Uncertainty
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Mantas Mazeika
Saurav Kadavath
Basel Alomair
OODSSL
69
953
0
28 Jun 2019
Invariance-inducing regularization using worst-case transformations
  suffices to boost accuracy and spatial robustness
Invariance-inducing regularization using worst-case transformations suffices to boost accuracy and spatial robustness
Fanny Yang
Zuowen Wang
C. Heinze-Deml
126
42
0
26 Jun 2019
Improving performance of deep learning models with axiomatic attribution
  priors and expected gradients
Improving performance of deep learning models with axiomatic attribution priors and expected gradients
G. Erion
Joseph D. Janizek
Pascal Sturmfels
Scott M. Lundberg
Su-In Lee
OODBDLFAtt
95
82
0
25 Jun 2019
Interpolated Adversarial Training: Achieving Robust Neural Networks
  without Sacrificing Too Much Accuracy
Interpolated Adversarial Training: Achieving Robust Neural Networks without Sacrificing Too Much Accuracy
Alex Lamb
Vikas Verma
Kenji Kawaguchi
Alexander Matyasko
Savya Khosla
Arno Solin
Yoshua Bengio
AAML
70
99
0
16 Jun 2019
Previous
123...151617
Next