Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.08573
Cited By
Theoretically Principled Trade-off between Robustness and Accuracy
24 January 2019
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Theoretically Principled Trade-off between Robustness and Accuracy"
50 / 605 papers shown
Title
Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting
Abdulmajid Murad
F. Kraemer
Kerstin Bach
Gavin Taylor
OOD
BDL
UQCV
23
12
0
05 Dec 2021
Adv-4-Adv: Thwarting Changing Adversarial Perturbations via Adversarial Domain Adaptation
Tianyue Zheng
Zhe Chen
Shuya Ding
Chao Cai
Jun Luo
AAML
35
5
0
01 Dec 2021
ℓ
∞
\ell_\infty
ℓ
∞
-Robustness and Beyond: Unleashing Efficient Adversarial Training
H. M. Dolatabadi
S. Erfani
C. Leckie
OOD
AAML
29
11
0
01 Dec 2021
Push Stricter to Decide Better: A Class-Conditional Feature Adaptive Framework for Improving Adversarial Robustness
Jia-Li Yin
Lehui Xie
Wanqing Zhu
Ximeng Liu
Bo-Hao Chen
TTA
AAML
34
3
0
01 Dec 2021
Pyramid Adversarial Training Improves ViT Performance
Charles Herrmann
Kyle Sargent
Lu Jiang
Ramin Zabih
Huiwen Chang
Ce Liu
Dilip Krishnan
Deqing Sun
ViT
32
56
0
30 Nov 2021
MedRDF: A Robust and Retrain-Less Diagnostic Framework for Medical Pretrained Models Against Adversarial Attack
Mengting Xu
Tao Zhang
Daoqiang Zhang
AAML
MedIm
26
23
0
29 Nov 2021
Clustering Effect of (Linearized) Adversarial Robust Models
Yang Bai
Xin Yan
Yong Jiang
Shutao Xia
Yisen Wang
OOD
AAML
44
5
0
25 Nov 2021
Subspace Adversarial Training
Tao Li
Yingwen Wu
Sizhe Chen
Kun Fang
Xiaolin Huang
AAML
OOD
44
57
0
24 Nov 2021
Robust and Accurate Object Detection via Self-Knowledge Distillation
Weipeng Xu
Pengzhi Chu
Renhao Xie
Xiongziyan Xiao
Hongcheng Huang
AAML
ObjD
27
4
0
14 Nov 2021
Data Augmentation Can Improve Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
34
271
0
09 Nov 2021
MixACM: Mixup-Based Robustness Transfer via Distillation of Activated Channel Maps
Muhammad Awais
Fengwei Zhou
Chuanlong Xie
Jiawei Li
Sung-Ho Bae
Zhenguo Li
AAML
43
17
0
09 Nov 2021
DeepSteal: Advanced Model Extractions Leveraging Efficient Weight Stealing in Memories
Adnan Siraj Rakin
Md Hafizul Islam Chowdhuryy
Fan Yao
Deliang Fan
AAML
MIACV
42
110
0
08 Nov 2021
Robust and Information-theoretically Safe Bias Classifier against Adversarial Attacks
Lijia Yu
Xiao-Shan Gao
AAML
21
5
0
08 Nov 2021
Smooth Imitation Learning via Smooth Costs and Smooth Policies
Sapana Chaudhary
Balaraman Ravindran
24
1
0
03 Nov 2021
LTD: Low Temperature Distillation for Robust Adversarial Training
Erh-Chung Chen
Che-Rung Lee
AAML
27
26
0
03 Nov 2021
Pareto Adversarial Robustness: Balancing Spatial Robustness and Sensitivity-based Robustness
Ke Sun
Mingjie Li
Zhouchen Lin
AAML
27
2
0
03 Nov 2021
Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks
Maksym Yatsura
J. H. Metzen
Matthias Hein
OOD
26
14
0
02 Nov 2021
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds
Yujia Huang
Huan Zhang
Yuanyuan Shi
J Zico Kolter
Anima Anandkumar
41
76
0
02 Nov 2021
When Does Contrastive Learning Preserve Adversarial Robustness from Pretraining to Finetuning?
Lijie Fan
Sijia Liu
Pin-Yu Chen
Gaoyuan Zhang
Chuang Gan
AAML
VLM
22
120
0
01 Nov 2021
Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided Curriculum Learning Approach
A. Sarkar
Anirban Sarkar
Sowrya Gali
V. Balasubramanian
AAML
35
7
0
30 Oct 2021
Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks
Hassan Dbouk
Naresh R Shanbhag
AAML
21
7
0
28 Oct 2021
Towards Evaluating the Robustness of Neural Networks Learned by Transduction
Jiefeng Chen
Xi Wu
Yang Guo
Yingyu Liang
S. Jha
ELM
AAML
23
15
0
27 Oct 2021
RoMA: Robust Model Adaptation for Offline Model-based Optimization
Sihyun Yu
Sungsoo Ahn
Le Song
Jinwoo Shin
OffRL
40
31
0
27 Oct 2021
How and When Adversarial Robustness Transfers in Knowledge Distillation?
Rulin Shao
Ming Zhou
C. Bezemer
Cho-Jui Hsieh
AAML
32
17
0
22 Oct 2021
Transductive Robust Learning Guarantees
Omar Montasser
Steve Hanneke
Nathan Srebro
26
13
0
20 Oct 2021
Improving Robustness using Generated Data
Sven Gowal
Sylvestre-Alvise Rebuffi
Olivia Wiles
Florian Stimberg
D. A. Calian
Timothy A. Mann
36
294
0
18 Oct 2021
Parameterizing Activation Functions for Adversarial Robustness
Sihui Dai
Saeed Mahloujifar
Prateek Mittal
AAML
47
32
0
11 Oct 2021
Adversarial Token Attacks on Vision Transformers
Ameya Joshi
Gauri Jagatap
C. Hegde
ViT
30
19
0
08 Oct 2021
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
48
100
0
07 Oct 2021
Label Noise in Adversarial Training: A Novel Perspective to Study Robust Overfitting
Chengyu Dong
Liyuan Liu
Jingbo Shang
NoLa
AAML
69
18
0
07 Oct 2021
Adversarial Attacks on Spiking Convolutional Neural Networks for Event-based Vision
Julian Buchel
Gregor Lenz
Yalun Hu
Sadique Sheik
M. Sorbaro
AAML
32
14
0
06 Oct 2021
GDA-AM: On the effectiveness of solving minimax optimization via Anderson Acceleration
Huan He
Shifan Zhao
Yuanzhe Xi
Joyce C. Ho
Y. Saad
34
1
0
06 Oct 2021
Trustworthy AI: From Principles to Practices
Bo-wen Li
Peng Qi
Bo Liu
Shuai Di
Jingen Liu
Jiquan Pei
Jinfeng Yi
Bowen Zhou
119
357
0
04 Oct 2021
Calibrated Adversarial Training
Tianjin Huang
Vlado Menkovski
Yulong Pei
Mykola Pechenizkiy
AAML
64
3
0
01 Oct 2021
Introducing the DOME Activation Functions
Mohamed E. Hussein
Wael AbdAlmageed
30
1
0
30 Sep 2021
BulletTrain: Accelerating Robust Neural Network Training via Boundary Example Mining
Weizhe Hua
Yichi Zhang
Chuan Guo
Zhiru Zhang
G. E. Suh
OOD
39
15
0
29 Sep 2021
Modeling Adversarial Noise for Adversarial Training
Dawei Zhou
Nannan Wang
Bo Han
Tongliang Liu
AAML
38
15
0
21 Sep 2021
Simple Post-Training Robustness Using Test Time Augmentations and Random Forest
Gilad Cohen
Raja Giryes
AAML
42
4
0
16 Sep 2021
Adversarial Bone Length Attack on Action Recognition
Nariki Tanaka
Hiroshi Kera
K. Kawamoto
AAML
27
13
0
13 Sep 2021
Improving the Robustness of Adversarial Attacks Using an Affine-Invariant Gradient Estimator
Wenzhao Xiang
Hang Su
Chang-rui Liu
Yandong Guo
Shibao Zheng
AAML
29
5
0
13 Sep 2021
Check Your Other Door! Creating Backdoor Attacks in the Frequency Domain
Hasan Hammoud
Guohao Li
AAML
20
13
0
12 Sep 2021
Regional Adversarial Training for Better Robust Generalization
Chuanbiao Song
Yanbo Fan
Yichen Yang
Baoyuan Wu
Yiming Li
Zhifeng Li
Kun He
AAML
OOD
21
6
0
02 Sep 2021
Benchmarking the Accuracy and Robustness of Feedback Alignment Algorithms
Albert Jiménez Sanfiz
Mohamed Akrout
OOD
AAML
25
8
0
30 Aug 2021
Investigating Vulnerabilities of Deep Neural Policies
Ezgi Korkmaz
AAML
24
33
0
30 Aug 2021
Searching for an Effective Defender: Benchmarking Defense against Adversarial Word Substitution
Zongyi Li
Jianhan Xu
Jiehang Zeng
Linyang Li
Xiaoqing Zheng
Qi Zhang
Kai-Wei Chang
Cho-Jui Hsieh
AAML
8
74
0
29 Aug 2021
Understanding the Logit Distributions of Adversarially-Trained Deep Neural Networks
Landan Seguin
A. Ndirango
Neeli Mishra
SueYeon Chung
Tyler Lee
OOD
25
2
0
26 Aug 2021
A Hierarchical Assessment of Adversarial Severity
Guillaume Jeanneret
Juan Pérez
Pablo Arbeláez
AAML
36
2
0
26 Aug 2021
Towards Understanding the Generative Capability of Adversarially Robust Classifiers
Yao Zhu
Jiacheng Ma
Jiacheng Sun
Zewei Chen
Rongxin Jiang
Zhenguo Li
AAML
29
21
0
20 Aug 2021
Neural Architecture Dilation for Adversarial Robustness
Yanxi Li
Zhaohui Yang
Yunhe Wang
Chang Xu
AAML
38
23
0
16 Aug 2021
AGKD-BML: Defense Against Adversarial Attack by Attention Guided Knowledge Distillation and Bi-directional Metric Learning
Hong Wang
Yuefan Deng
Shinjae Yoo
Haibin Ling
Yuewei Lin
AAML
32
15
0
13 Aug 2021
Previous
1
2
3
...
7
8
9
...
11
12
13
Next