ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.08573
  4. Cited By
Theoretically Principled Trade-off between Robustness and Accuracy

Theoretically Principled Trade-off between Robustness and Accuracy

24 January 2019
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
ArXivPDFHTML

Papers citing "Theoretically Principled Trade-off between Robustness and Accuracy"

50 / 605 papers shown
Title
Robustness through Cognitive Dissociation Mitigation in Contrastive
  Adversarial Training
Robustness through Cognitive Dissociation Mitigation in Contrastive Adversarial Training
Adir Rahamim
I. Naeh
AAML
35
1
0
16 Mar 2022
LAS-AT: Adversarial Training with Learnable Attack Strategy
LAS-AT: Adversarial Training with Learnable Attack Strategy
Xiaojun Jia
Yong Zhang
Baoyuan Wu
Ke Ma
Jue Wang
Xiaochun Cao
AAML
47
131
0
13 Mar 2022
Enhancing Adversarial Training with Second-Order Statistics of Weights
Enhancing Adversarial Training with Second-Order Statistics of Weights
Gao Jin
Xinping Yi
Wei Huang
S. Schewe
Xiaowei Huang
AAML
34
47
0
11 Mar 2022
Exploiting the Potential of Datasets: A Data-Centric Approach for Model
  Robustness
Exploiting the Potential of Datasets: A Data-Centric Approach for Model Robustness
Yiqi Zhong
Lei Wu
Xianming Liu
Junjun Jiang
AAML
30
9
0
10 Mar 2022
Practical Evaluation of Adversarial Robustness via Adaptive Auto Attack
Practical Evaluation of Adversarial Robustness via Adaptive Auto Attack
Ye Liu
Yaya Cheng
Lianli Gao
Xianglong Liu
Qilong Zhang
Jingkuan Song
AAML
45
57
0
10 Mar 2022
Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity
Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity
Cheng Luo
Qinliang Lin
Weicheng Xie
Bizhu Wu
Jinheng Xie
Linlin Shen
AAML
39
101
0
10 Mar 2022
Defending Black-box Skeleton-based Human Activity Classifiers
Defending Black-box Skeleton-based Human Activity Classifiers
He Wang
Yunfeng Diao
Zichang Tan
G. Guo
AAML
53
10
0
09 Mar 2022
Joint rotational invariance and adversarial training of a dual-stream
  Transformer yields state of the art Brain-Score for Area V4
Joint rotational invariance and adversarial training of a dual-stream Transformer yields state of the art Brain-Score for Area V4
William Berrios
Arturo Deza
MedIm
ViT
30
13
0
08 Mar 2022
Robustly-reliable learners under poisoning attacks
Robustly-reliable learners under poisoning attacks
Maria-Florina Balcan
Avrim Blum
Steve Hanneke
Dravyansh Sharma
AAML
OOD
26
14
0
08 Mar 2022
Towards Efficient Data-Centric Robust Machine Learning with Noise-based
  Augmentation
Towards Efficient Data-Centric Robust Machine Learning with Noise-based Augmentation
Xiaogeng Liu
Haoyu Wang
Yechao Zhang
Fangzhou Wu
Shengshan Hu
OOD
27
11
0
08 Mar 2022
Why adversarial training can hurt robust accuracy
Why adversarial training can hurt robust accuracy
Jacob Clarysse
Julia Hörrmann
Fanny Yang
AAML
15
18
0
03 Mar 2022
Global-Local Regularization Via Distributional Robustness
Global-Local Regularization Via Distributional Robustness
Hoang Phan
Trung Le
Trung-Nghia Phung
Tu Bui
Nhat Ho
Dinh Q. Phung
OOD
24
12
0
01 Mar 2022
Evaluating the Adversarial Robustness of Adaptive Test-time Defenses
Evaluating the Adversarial Robustness of Adaptive Test-time Defenses
Francesco Croce
Sven Gowal
T. Brunner
Evan Shelhamer
Matthias Hein
A. Cemgil
TTA
AAML
181
68
0
28 Feb 2022
A Unified Wasserstein Distributional Robustness Framework for
  Adversarial Training
A Unified Wasserstein Distributional Robustness Framework for Adversarial Training
Tu Bui
Trung Le
Quan Hung Tran
He Zhao
Dinh Q. Phung
AAML
OOD
46
43
0
27 Feb 2022
Adversarial robustness of sparse local Lipschitz predictors
Adversarial robustness of sparse local Lipschitz predictors
Ramchandran Muthukumar
Jeremias Sulam
AAML
34
13
0
26 Feb 2022
Indiscriminate Poisoning Attacks on Unsupervised Contrastive Learning
Indiscriminate Poisoning Attacks on Unsupervised Contrastive Learning
Hao He
Kaiwen Zha
Dina Katabi
AAML
36
33
0
22 Feb 2022
On the Effectiveness of Adversarial Training against Backdoor Attacks
On the Effectiveness of Adversarial Training against Backdoor Attacks
Yinghua Gao
Dongxian Wu
Jingfeng Zhang
Guanhao Gan
Shutao Xia
Gang Niu
Masashi Sugiyama
AAML
32
22
0
22 Feb 2022
Privacy Leakage of Adversarial Training Models in Federated Learning
  Systems
Privacy Leakage of Adversarial Training Models in Federated Learning Systems
Jingyang Zhang
Yiran Chen
Hai Helen Li
FedML
PICV
37
15
0
21 Feb 2022
Semi-Implicit Hybrid Gradient Methods with Application to Adversarial
  Robustness
Semi-Implicit Hybrid Gradient Methods with Application to Adversarial Robustness
Beomsu Kim
Junghoon Seo
AAML
28
0
0
21 Feb 2022
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
Tianyu Pang
Min Lin
Xiao Yang
Junyi Zhu
Shuicheng Yan
40
120
0
21 Feb 2022
Sparsity Winning Twice: Better Robust Generalization from More Efficient
  Training
Sparsity Winning Twice: Better Robust Generalization from More Efficient Training
Tianlong Chen
Zhenyu Zhang
Pengju Wang
Santosh Balachandra
Haoyu Ma
Zehao Wang
Zhangyang Wang
OOD
AAML
100
47
0
20 Feb 2022
Exploring Adversarially Robust Training for Unsupervised Domain
  Adaptation
Exploring Adversarially Robust Training for Unsupervised Domain Adaptation
Shao-Yuan Lo
Vishal M. Patel
AAML
41
8
0
18 Feb 2022
Holistic Adversarial Robustness of Deep Learning Models
Holistic Adversarial Robustness of Deep Learning Models
Pin-Yu Chen
Sijia Liu
AAML
54
16
0
15 Feb 2022
Adversarial Attacks and Defense Methods for Power Quality Recognition
Adversarial Attacks and Defense Methods for Power Quality Recognition
Jiwei Tian
Buhong Wang
Jing Li
Zhen Wang
Mete Ozay
AAML
28
0
0
11 Feb 2022
D4: Detection of Adversarial Diffusion Deepfakes Using Disjoint
  Ensembles
D4: Detection of Adversarial Diffusion Deepfakes Using Disjoint Ensembles
Ashish Hooda
Neal Mangaokar
Ryan Feng
Kassem Fawaz
S. Jha
Atul Prakash
35
11
0
11 Feb 2022
Controlling the Complexity and Lipschitz Constant improves polynomial
  nets
Controlling the Complexity and Lipschitz Constant improves polynomial nets
Zhenyu Zhu
Fabian Latorre
Grigorios G. Chrysos
V. Cevher
27
10
0
10 Feb 2022
Verification-Aided Deep Ensemble Selection
Verification-Aided Deep Ensemble Selection
Guy Amir
Tom Zelazny
Guy Katz
Michael Schapira
AAML
30
18
0
08 Feb 2022
Layer-wise Regularized Adversarial Training using Layers Sustainability
  Analysis (LSA) framework
Layer-wise Regularized Adversarial Training using Layers Sustainability Analysis (LSA) framework
Mohammad Khalooei
M. Homayounpour
M. Amirmazlaghani
AAML
25
3
0
05 Feb 2022
Adversarially Robust Models may not Transfer Better: Sufficient
  Conditions for Domain Transferability from the View of Regularization
Adversarially Robust Models may not Transfer Better: Sufficient Conditions for Domain Transferability from the View of Regularization
Xiaojun Xu
Jacky Y. Zhang
Evelyn Ma
Danny Son
Oluwasanmi Koyejo
Bo-wen Li
20
10
0
03 Feb 2022
Robust Binary Models by Pruning Randomly-initialized Networks
Robust Binary Models by Pruning Randomly-initialized Networks
Chen Liu
Ziqi Zhao
Sabine Süsstrunk
Mathieu Salzmann
TPM
AAML
MQ
32
4
0
03 Feb 2022
Smoothed Embeddings for Certified Few-Shot Learning
Smoothed Embeddings for Certified Few-Shot Learning
Mikhail Aleksandrovich Pautov
Olesya Kuznetsova
Nurislam Tursynbek
Aleksandr Petiushko
Ivan Oseledets
47
5
0
02 Feb 2022
Can Adversarial Training Be Manipulated By Non-Robust Features?
Can Adversarial Training Be Manipulated By Non-Robust Features?
Lue Tao
Lei Feng
Hongxin Wei
Jinfeng Yi
Sheng-Jun Huang
Songcan Chen
AAML
139
16
0
31 Jan 2022
Improving Robustness by Enhancing Weak Subnets
Improving Robustness by Enhancing Weak Subnets
Yong Guo
David Stutz
Bernt Schiele
AAML
37
15
0
30 Jan 2022
Scale-Invariant Adversarial Attack for Evaluating and Enhancing
  Adversarial Defenses
Scale-Invariant Adversarial Attack for Evaluating and Enhancing Adversarial Defenses
Mengting Xu
Tao Zhang
Zhongnian Li
Daoqiang Zhang
AAML
38
1
0
29 Jan 2022
Efficient and Robust Classification for Sparse Attacks
Efficient and Robust Classification for Sparse Attacks
M. Beliaev
Payam Delgosha
Hamed Hassani
Ramtin Pedarsani
AAML
27
2
0
23 Jan 2022
Toward Enhanced Robustness in Unsupervised Graph Representation
  Learning: A Graph Information Bottleneck Perspective
Toward Enhanced Robustness in Unsupervised Graph Representation Learning: A Graph Information Bottleneck Perspective
Jihong Wang
Minnan Luo
Jundong Li
Ziqi Liu
Jun Zhou
Qinghua Zheng
AAML
23
5
0
21 Jan 2022
Transferability in Deep Learning: A Survey
Transferability in Deep Learning: A Survey
Junguang Jiang
Yang Shu
Jianmin Wang
Mingsheng Long
OOD
34
101
0
15 Jan 2022
Robust Natural Language Processing: Recent Advances, Challenges, and
  Future Directions
Robust Natural Language Processing: Recent Advances, Challenges, and Future Directions
Marwan Omar
Soohyeon Choi
Daehun Nyang
David A. Mohaisen
32
57
0
03 Jan 2022
Rethinking Feature Uncertainty in Stochastic Neural Networks for
  Adversarial Robustness
Rethinking Feature Uncertainty in Stochastic Neural Networks for Adversarial Robustness
Hao Yang
Min Wang
Zhengfei Yu
Yun Zhou
OOD
AAML
22
3
0
01 Jan 2022
Benign Overfitting in Adversarially Robust Linear Classification
Benign Overfitting in Adversarially Robust Linear Classification
Jinghui Chen
Yuan Cao
Quanquan Gu
AAML
SILM
34
10
0
31 Dec 2021
Learning Robust and Lightweight Model through Separable Structured
  Transformations
Learning Robust and Lightweight Model through Separable Structured Transformations
Xian Wei
Yanhui Huang
Yang Xu
Mingsong Chen
Hai Lan
Yuanxiang Li
Zhongfeng Wang
Xuan Tang
OOD
24
0
0
27 Dec 2021
Stealthy Attack on Algorithmic-Protected DNNs via Smart Bit Flipping
Stealthy Attack on Algorithmic-Protected DNNs via Smart Bit Flipping
B. Ghavami
Seyd Movi
Zhenman Fang
Lesley Shannon
AAML
40
9
0
25 Dec 2021
How Should Pre-Trained Language Models Be Fine-Tuned Towards Adversarial
  Robustness?
How Should Pre-Trained Language Models Be Fine-Tuned Towards Adversarial Robustness?
Xinhsuai Dong
Anh Tuan Luu
Min Lin
Shuicheng Yan
Hanwang Zhang
SILM
AAML
25
55
0
22 Dec 2021
Sharpness-Aware Minimization with Dynamic Reweighting
Sharpness-Aware Minimization with Dynamic Reweighting
Wenxuan Zhou
Fangyu Liu
Huan Zhang
Muhao Chen
AAML
31
8
0
16 Dec 2021
Measure and Improve Robustness in NLP Models: A Survey
Measure and Improve Robustness in NLP Models: A Survey
Xuezhi Wang
Haohan Wang
Diyi Yang
139
131
0
15 Dec 2021
On the Impact of Hard Adversarial Instances on Overfitting in
  Adversarial Training
On the Impact of Hard Adversarial Instances on Overfitting in Adversarial Training
Chen Liu
Zhichao Huang
Mathieu Salzmann
Tong Zhang
Sabine Süsstrunk
AAML
28
13
0
14 Dec 2021
Triangle Attack: A Query-efficient Decision-based Adversarial Attack
Triangle Attack: A Query-efficient Decision-based Adversarial Attack
Xiaosen Wang
Zeliang Zhang
Kangheng Tong
Dihong Gong
Kun He
Zhifeng Li
Wei Liu
AAML
24
56
0
13 Dec 2021
Interpolated Joint Space Adversarial Training for Robust and
  Generalizable Defenses
Interpolated Joint Space Adversarial Training for Robust and Generalizable Defenses
Chun Pong Lau
Jiang-Long Liu
Hossein Souri
Wei-An Lin
S. Feizi
Ramalingam Chellappa
AAML
34
12
0
12 Dec 2021
Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer
Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer
Shiye Lei
Zhuozhuo Tu
Leszek Rutkowski
Feng Zhou
Li Shen
Fengxiang He
Dacheng Tao
BDL
28
2
0
12 Dec 2021
Mutual Adversarial Training: Learning together is better than going
  alone
Mutual Adversarial Training: Learning together is better than going alone
Jiang-Long Liu
Chun Pong Lau
Hossein Souri
S. Feizi
Ramalingam Chellappa
OOD
AAML
48
24
0
09 Dec 2021
Previous
123...678...111213
Next