ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.11428
  4. Cited By
Resampled Priors for Variational Autoencoders

Resampled Priors for Variational Autoencoders

26 October 2018
Matthias Bauer
A. Mnih
    BDL
    DRL
ArXivPDFHTML

Papers citing "Resampled Priors for Variational Autoencoders"

35 / 85 papers shown
Title
A Contrastive Learning Approach for Training Variational Autoencoder
  Priors
A Contrastive Learning Approach for Training Variational Autoencoder Priors
J. Aneja
A. Schwing
Jan Kautz
Arash Vahdat
DRL
8
81
0
06 Oct 2020
Bigeminal Priors Variational auto-encoder
Bigeminal Priors Variational auto-encoder
Xuming Ran
Mingkun Xu
Qi Xu
Huihui Zhou
Quanying Liu
14
3
0
05 Oct 2020
Generalizing Variational Autoencoders with Hierarchical Empirical Bayes
Generalizing Variational Autoencoders with Hierarchical Empirical Bayes
Wei Cheng
Gregory Darnell
Sohini Ramachandran
Lorin Crawford
BDL
11
2
0
20 Jul 2020
Unsupervised Controllable Generation with Self-Training
Unsupervised Controllable Generation with Self-Training
Grigorios G. Chrysos
Jean Kossaifi
Zhiding Yu
Anima Anandkumar
GAN
28
4
0
17 Jul 2020
Detecting Out-of-distribution Samples via Variational Auto-encoder with
  Reliable Uncertainty Estimation
Detecting Out-of-distribution Samples via Variational Auto-encoder with Reliable Uncertainty Estimation
Xuming Ran
Mingkun Xu
Lingrui Mei
Qi Xu
Quanying Liu
OODD
UQCV
42
50
0
16 Jul 2020
Failure Modes of Variational Autoencoders and Their Effects on
  Downstream Tasks
Failure Modes of Variational Autoencoders and Their Effects on Downstream Tasks
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
CML
DRL
27
25
0
14 Jul 2020
Coupling-based Invertible Neural Networks Are Universal Diffeomorphism
  Approximators
Coupling-based Invertible Neural Networks Are Universal Diffeomorphism Approximators
Takeshi Teshima
Isao Ishikawa
Koichi Tojo
Kenta Oono
Masahiro Ikeda
Masashi Sugiyama
19
110
0
20 Jun 2020
Manifolds for Unsupervised Visual Anomaly Detection
Manifolds for Unsupervised Visual Anomaly Detection
Louise Naud
Alexander Lavin
DRL
8
6
0
19 Jun 2020
A Tutorial on VAEs: From Bayes' Rule to Lossless Compression
A Tutorial on VAEs: From Bayes' Rule to Lossless Compression
Ronald Yu
BDL
13
23
0
18 Jun 2020
To Regularize or Not To Regularize? The Bias Variance Trade-off in
  Regularized AEs
To Regularize or Not To Regularize? The Bias Variance Trade-off in Regularized AEs
A. Mondal
Himanshu Asnani
Parag Singla
A. Prathosh
DRL
13
1
0
10 Jun 2020
Probabilistic Autoencoder
Probabilistic Autoencoder
Vanessa Böhm
U. Seljak
UQCV
BDL
DRL
24
32
0
09 Jun 2020
Exemplar VAE: Linking Generative Models, Nearest Neighbor Retrieval, and
  Data Augmentation
Exemplar VAE: Linking Generative Models, Nearest Neighbor Retrieval, and Data Augmentation
Sajad Norouzi
David J. Fleet
Mohammad Norouzi
VLM
DRL
16
3
0
09 Apr 2020
Characterizing and Avoiding Problematic Global Optima of Variational
  Autoencoders
Characterizing and Avoiding Problematic Global Optima of Variational Autoencoders
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
DRL
21
4
0
17 Mar 2020
Your GAN is Secretly an Energy-based Model and You Should use
  Discriminator Driven Latent Sampling
Your GAN is Secretly an Energy-based Model and You Should use Discriminator Driven Latent Sampling
Tong Che
Ruixiang Zhang
Jascha Narain Sohl-Dickstein
Hugo Larochelle
Liam Paull
Yuan Cao
Yoshua Bengio
DiffM
DRL
22
111
0
12 Mar 2020
Variance Loss in Variational Autoencoders
Variance Loss in Variational Autoencoders
Andrea Asperti
DRL
21
14
0
23 Feb 2020
Balancing reconstruction error and Kullback-Leibler divergence in
  Variational Autoencoders
Balancing reconstruction error and Kullback-Leibler divergence in Variational Autoencoders
Andrea Asperti
Matteo Trentin
DRL
27
96
0
18 Feb 2020
On the Discrepancy between Density Estimation and Sequence Generation
On the Discrepancy between Density Estimation and Sequence Generation
Jason D. Lee
Dustin Tran
Orhan Firat
Kyunghyun Cho
8
11
0
17 Feb 2020
Variational Autoencoders with Riemannian Brownian Motion Priors
Variational Autoencoders with Riemannian Brownian Motion Priors
Dimitris Kalatzis
David Eklund
Georgios Arvanitidis
Søren Hauberg
BDL
DRL
60
48
0
12 Feb 2020
The Usual Suspects? Reassessing Blame for VAE Posterior Collapse
The Usual Suspects? Reassessing Blame for VAE Posterior Collapse
Bin Dai
Ziyu Wang
David Wipf
DRL
24
75
0
23 Dec 2019
Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution
  Detection
Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution Detection
Erik A. Daxberger
José Miguel Hernández-Lobato
UQCV
18
63
0
11 Dec 2019
MaskAAE: Latent space optimization for Adversarial Auto-Encoders
MaskAAE: Latent space optimization for Adversarial Auto-Encoders
A. Mondal
Sankalan Pal Chowdhury
Aravind Jayendran
Parag Singla
Himanshu Asnani
P. PrathoshA.
GAN
DRL
6
0
0
10 Dec 2019
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
57
1,631
0
05 Dec 2019
dpVAEs: Fixing Sample Generation for Regularized VAEs
dpVAEs: Fixing Sample Generation for Regularized VAEs
Riddhish Bhalodia
Iain Lee
Shireen Y. Elhabian
DRL
17
10
0
24 Nov 2019
Energy-Inspired Models: Learning with Sampler-Induced Distributions
Energy-Inspired Models: Learning with Sampler-Induced Distributions
Dieterich Lawson
George Tucker
Bo Dai
Rajesh Ranganath
19
31
0
31 Oct 2019
Neural Density Estimation and Likelihood-free Inference
Neural Density Estimation and Likelihood-free Inference
George Papamakarios
BDL
DRL
24
44
0
29 Oct 2019
A Prior of a Googol Gaussians: a Tensor Ring Induced Prior for
  Generative Models
A Prior of a Googol Gaussians: a Tensor Ring Induced Prior for Generative Models
Maksim Kuznetsov
Daniil Polykovskiy
Dmitry Vetrov
Alexander Zhebrak
GAN
16
18
0
29 Oct 2019
Refined $α$-Divergence Variational Inference via Rejection Sampling
Refined ααα-Divergence Variational Inference via Rejection Sampling
Rahul Sharma
Abhishek Kumar
Piyush Rai
11
0
0
17 Sep 2019
Generating Diverse High-Fidelity Images with VQ-VAE-2
Generating Diverse High-Fidelity Images with VQ-VAE-2
Ali Razavi
Aaron van den Oord
Oriol Vinyals
DRL
BDL
16
1,770
0
02 Jun 2019
On the Necessity and Effectiveness of Learning the Prior of Variational
  Auto-Encoder
On the Necessity and Effectiveness of Learning the Prior of Variational Auto-Encoder
Haowen Xu
Wenxiao Chen
Jinlin Lai
Zhihan Li
Youjian Zhao
Dan Pei
DRL
BDL
32
14
0
31 May 2019
Unified Probabilistic Deep Continual Learning through Generative Replay
  and Open Set Recognition
Unified Probabilistic Deep Continual Learning through Generative Replay and Open Set Recognition
Martin Mundt
Iuliia Pliushch
Sagnik Majumder
Yongwon Hong
Visvanathan Ramesh
UQCV
BDL
24
40
0
28 May 2019
Generative Latent Flow
Generative Latent Flow
Zhisheng Xiao
Qing Yan
Y. Amit
DRL
17
15
0
24 May 2019
Autoregressive Energy Machines
Autoregressive Energy Machines
C. Nash
Conor Durkan
23
55
0
11 Apr 2019
From Variational to Deterministic Autoencoders
From Variational to Deterministic Autoencoders
Partha Ghosh
Mehdi S. M. Sajjadi
Antonio Vergari
Michael J. Black
Bernhard Schölkopf
DRL
37
269
0
29 Mar 2019
A RAD approach to deep mixture models
A RAD approach to deep mixture models
Laurent Dinh
Jascha Narain Sohl-Dickstein
Hugo Larochelle
Razvan Pascanu
16
45
0
18 Mar 2019
Latent Space Autoregression for Novelty Detection
Latent Space Autoregression for Novelty Detection
Davide Abati
Angelo Porrello
Simone Calderara
Rita Cucchiara
16
432
0
04 Jul 2018
Previous
12