ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.05626
23
55

Autoregressive Energy Machines

11 April 2019
C. Nash
Conor Durkan
ArXivPDFHTML
Abstract

Neural density estimators are flexible families of parametric models which have seen widespread use in unsupervised machine learning in recent years. Maximum-likelihood training typically dictates that these models be constrained to specify an explicit density. However, this limitation can be overcome by instead using a neural network to specify an energy function, or unnormalized density, which can subsequently be normalized to obtain a valid distribution. The challenge with this approach lies in accurately estimating the normalizing constant of the high-dimensional energy function. We propose the Autoregressive Energy Machine, an energy-based model which simultaneously learns an unnormalized density and computes an importance-sampling estimate of the normalizing constant for each conditional in an autoregressive decomposition. The Autoregressive Energy Machine achieves state-of-the-art performance on a suite of density-estimation tasks.

View on arXiv
Comments on this paper