ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.11428
  4. Cited By
Resampled Priors for Variational Autoencoders

Resampled Priors for Variational Autoencoders

26 October 2018
Matthias Bauer
A. Mnih
    BDL
    DRL
ArXivPDFHTML

Papers citing "Resampled Priors for Variational Autoencoders"

50 / 85 papers shown
Title
Unsupervised Anomaly Detection in Multivariate Time Series across Heterogeneous Domains
Unsupervised Anomaly Detection in Multivariate Time Series across Heterogeneous Domains
Vincent Jacob
Y. Diao
AI4TS
46
0
0
29 Mar 2025
Studying Classifier(-Free) Guidance From a Classifier-Centric Perspective
Xiaoming Zhao
Alexander Schwing
FaML
63
0
0
13 Mar 2025
Hierarchical VAE with a Diffusion-based VampPrior
Hierarchical VAE with a Diffusion-based VampPrior
Anna Kuzina
Jakub M. Tomczak
DiffM
TPM
BDL
92
1
0
02 Dec 2024
Learning Latent Space Hierarchical EBM Diffusion Models
Learning Latent Space Hierarchical EBM Diffusion Models
Jiali Cui
Tian Han
DiffM
48
2
0
22 May 2024
You Only Sample Once: Taming One-Step Text-to-Image Synthesis by
  Self-Cooperative Diffusion GANs
You Only Sample Once: Taming One-Step Text-to-Image Synthesis by Self-Cooperative Diffusion GANs
Yihong Luo
Xiaolong Chen
Xinghua Qu
Jing Tang
61
6
0
19 Mar 2024
Monotone, Bi-Lipschitz, and Polyak-Lojasiewicz Networks
Monotone, Bi-Lipschitz, and Polyak-Lojasiewicz Networks
Ruigang Wang
Krishnamurthy Dvijotham
I. Manchester
36
5
0
02 Feb 2024
Matching aggregate posteriors in the variational autoencoder
Matching aggregate posteriors in the variational autoencoder
Surojit Saha
Sarang Joshi
Ross T. Whitaker
DRL
37
4
0
13 Nov 2023
Topology-Matching Normalizing Flows for Out-of-Distribution Detection in
  Robot Learning
Topology-Matching Normalizing Flows for Out-of-Distribution Detection in Robot Learning
Jianxiang Feng
Jongseok Lee
Simon Geisler
Stephan Gunnemann
Rudolph Triebel
OODD
32
4
0
11 Nov 2023
Reparameterized Variational Rejection Sampling
Reparameterized Variational Rejection Sampling
M. Jankowiak
Du Phan
DRL
BDL
24
1
0
26 Sep 2023
Diffusion Models with Deterministic Normalizing Flow Priors
Diffusion Models with Deterministic Normalizing Flow Priors
Mohsen Zand
Ali Etemad
Michael A. Greenspan
DiffM
34
2
0
03 Sep 2023
On the Approximation of Bi-Lipschitz Maps by Invertible Neural Networks
On the Approximation of Bi-Lipschitz Maps by Invertible Neural Networks
Bangti Jin
Zehui Zhou
Jun Zou
26
3
0
18 Aug 2023
Deep Probabilistic Movement Primitives with a Bayesian Aggregator
Deep Probabilistic Movement Primitives with a Bayesian Aggregator
Michael Przystupa
Faezeh Haghverd
Martin Jägersand
Samuele Tosatto
21
6
0
11 Jul 2023
Unscented Autoencoder
Unscented Autoencoder
Faris Janjos
Lars Rosenbaum
Maxim Dolgov
J. Marius Zöllner
21
2
0
08 Jun 2023
Learning Manifold Dimensions with Conditional Variational Autoencoders
Learning Manifold Dimensions with Conditional Variational Autoencoders
Yijia Zheng
Tong He
Yixuan Qiu
David Wipf
DRL
24
17
0
23 Feb 2023
The Sample Complexity of Approximate Rejection Sampling with
  Applications to Smoothed Online Learning
The Sample Complexity of Approximate Rejection Sampling with Applications to Smoothed Online Learning
Adam Block
Yury Polyanskiy
39
7
0
09 Feb 2023
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
Ba-Hien Tran
Babak Shahbaba
Stephan Mandt
Maurizio Filippone
SyDa
BDL
UQCV
28
5
0
09 Feb 2023
Refining Generative Process with Discriminator Guidance in Score-based
  Diffusion Models
Refining Generative Process with Discriminator Guidance in Score-based Diffusion Models
Dongjun Kim
Yeongmin Kim
Se Jung Kwon
Wanmo Kang
Il-Chul Moon
DiffM
44
86
0
28 Nov 2022
Latent Space Diffusion Models of Cryo-EM Structures
Latent Space Diffusion Models of Cryo-EM Structures
Karsten Kreis
Tim Dockhorn
Zihao Li
Ellen D. Zhong
DiffM
35
15
0
25 Nov 2022
Improving Variational Autoencoders with Density Gap-based Regularization
Improving Variational Autoencoders with Density Gap-based Regularization
Jianfei Zhang
Jun Bai
Chenghua Lin
Yanmeng Wang
Wenge Rong
DRL
36
4
0
01 Nov 2022
LION: Latent Point Diffusion Models for 3D Shape Generation
LION: Latent Point Diffusion Models for 3D Shape Generation
Fangyin Wei
Arash Vahdat
Francis Williams
Zan Gojcic
Or Litany
Sanja Fidler
Karsten Kreis
DiffM
73
489
0
12 Oct 2022
Cooperation in the Latent Space: The Benefits of Adding Mixture
  Components in Variational Autoencoders
Cooperation in the Latent Space: The Benefits of Adding Mixture Components in Variational Autoencoders
Oskar Kviman
Ricky Molén
A. Hotti
Semih Kurt
Victor Elvira
J. Lagergren
32
11
0
30 Sep 2022
Adaptive Multi-stage Density Ratio Estimation for Learning Latent Space
  Energy-based Model
Adaptive Multi-stage Density Ratio Estimation for Learning Latent Space Energy-based Model
Zhisheng Xiao
Tian Han
61
15
0
19 Sep 2022
A Geometric Perspective on Variational Autoencoders
A Geometric Perspective on Variational Autoencoders
Clément Chadebec
S. Allassonnière
DRL
37
21
0
15 Sep 2022
Comparing the latent space of generative models
Comparing the latent space of generative models
Andrea Asperti
Valerio Tonelli
DRL
26
12
0
14 Jul 2022
Bottlenecks CLUB: Unifying Information-Theoretic Trade-offs Among
  Complexity, Leakage, and Utility
Bottlenecks CLUB: Unifying Information-Theoretic Trade-offs Among Complexity, Leakage, and Utility
Behrooz Razeghi
Flavio du Pin Calmon
Deniz Gunduz
Slava Voloshynovskiy
29
15
0
11 Jul 2022
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use
  Case
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Clément Chadebec
Louis J. Vincent
S. Allassonnière
DRL
34
29
0
16 Jun 2022
Local Distance Preserving Auto-encoders using Continuous k-Nearest
  Neighbours Graphs
Local Distance Preserving Auto-encoders using Continuous k-Nearest Neighbours Graphs
Nutan Chen
Patrick van der Smagt
Botond Cseke
CLL
18
2
0
13 Jun 2022
Variational Sparse Coding with Learned Thresholding
Variational Sparse Coding with Learned Thresholding
Kion Fallah
Christopher Rozell
DRL
36
7
0
07 May 2022
Particle algorithms for maximum likelihood training of latent variable
  models
Particle algorithms for maximum likelihood training of latent variable models
Juan Kuntz
Jen Ning Lim
A. M. Johansen
FedML
13
21
0
27 Apr 2022
Universal approximation property of invertible neural networks
Universal approximation property of invertible neural networks
Isao Ishikawa
Takeshi Teshima
Koichi Tojo
Kenta Oono
Masahiro Ikeda
Masashi Sugiyama
46
29
0
15 Apr 2022
Multiple Importance Sampling ELBO and Deep Ensembles of Variational
  Approximations
Multiple Importance Sampling ELBO and Deep Ensembles of Variational Approximations
Oskar Kviman
Harald Melin
Hazal Koptagel
Victor Elvira
J. Lagergren
DRL
75
17
0
22 Feb 2022
VAEL: Bridging Variational Autoencoders and Probabilistic Logic
  Programming
VAEL: Bridging Variational Autoencoders and Probabilistic Logic Programming
Eleonora Misino
G. Marra
Emanuele Sansone
24
21
0
07 Feb 2022
DiffuseVAE: Efficient, Controllable and High-Fidelity Generation from
  Low-Dimensional Latents
DiffuseVAE: Efficient, Controllable and High-Fidelity Generation from Low-Dimensional Latents
Kushagra Pandey
Avideep Mukherjee
Piyush Rai
Abhishek Kumar
DiffM
33
114
0
02 Jan 2022
Resampling Base Distributions of Normalizing Flows
Resampling Base Distributions of Normalizing Flows
Vincent Stimper
Bernhard Schölkopf
José Miguel Hernández-Lobato
BDL
30
32
0
29 Oct 2021
Momentum Contrastive Autoencoder: Using Contrastive Learning for Latent
  Space Distribution Matching in WAE
Momentum Contrastive Autoencoder: Using Contrastive Learning for Latent Space Distribution Matching in WAE
Devansh Arpit
Aadyot Bhatnagar
Huan Wang
Caiming Xiong
18
0
0
19 Oct 2021
Regularising Inverse Problems with Generative Machine Learning Models
Regularising Inverse Problems with Generative Machine Learning Models
Margaret Duff
Neill D. F. Campbell
Matthias Joachim Ehrhardt
GAN
MedIm
29
34
0
22 Jul 2021
ByPE-VAE: Bayesian Pseudocoresets Exemplar VAE
ByPE-VAE: Bayesian Pseudocoresets Exemplar VAE
Qingzhong Ai
Lirong He
Shiyu Liu
Zenglin Xu
BDL
19
2
0
20 Jul 2021
On Incorporating Inductive Biases into VAEs
On Incorporating Inductive Biases into VAEs
Ning Miao
Emile Mathieu
N. Siddharth
Yee Whye Teh
Tom Rainforth
CML
DRL
30
10
0
25 Jun 2021
Model Selection for Bayesian Autoencoders
Model Selection for Bayesian Autoencoders
Ba-Hien Tran
Simone Rossi
Dimitrios Milios
Pietro Michiardi
Edwin V. Bonilla
Maurizio Filippone
BDL
23
12
0
11 Jun 2021
Score-based Generative Modeling in Latent Space
Score-based Generative Modeling in Latent Space
Arash Vahdat
Karsten Kreis
Jan Kautz
DiffM
16
659
0
10 Jun 2021
Local Disentanglement in Variational Auto-Encoders Using Jacobian $L_1$
  Regularization
Local Disentanglement in Variational Auto-Encoders Using Jacobian L1L_1L1​ Regularization
Travers Rhodes
Daniel D. Lee
DRL
19
15
0
05 Jun 2021
Variational Leakage: The Role of Information Complexity in Privacy
  Leakage
Variational Leakage: The Role of Information Complexity in Privacy Leakage
A. A. Atashin
Behrooz Razeghi
Deniz Gunduz
Slava Voloshynovskiy
PILM
16
9
0
05 Jun 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
31
124
0
14 May 2021
Data Augmentation in High Dimensional Low Sample Size Setting Using a
  Geometry-Based Variational Autoencoder
Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Clément Chadebec
Elina Thibeau-Sutre
Ninon Burgos
S. Allassonnière
38
62
0
30 Apr 2021
Distantly Supervised Relation Extraction with Sentence Reconstruction
  and Knowledge Base Priors
Distantly Supervised Relation Extraction with Sentence Reconstruction and Knowledge Base Priors
Fenia Christopoulou
Makoto Miwa
Sophia Ananiadou
43
20
0
16 Apr 2021
Variational Rejection Particle Filtering
Variational Rejection Particle Filtering
Rahul Sharma
S. Banerjee
Dootika Vats
Piyush Rai
BDL
27
0
0
29 Mar 2021
A prior-based approximate latent Riemannian metric
A prior-based approximate latent Riemannian metric
Georgios Arvanitidis
B. Georgiev
Bernhard Schölkopf
MedIm
14
11
0
09 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
41
483
0
08 Mar 2021
A survey on Variational Autoencoders from a GreenAI perspective
A survey on Variational Autoencoders from a GreenAI perspective
Andrea Asperti
David Evangelista
E. Loli Piccolomini
DRL
13
51
0
01 Mar 2021
GENs: Generative Encoding Networks
GENs: Generative Encoding Networks
Surojit Saha
Shireen Y. Elhabian
Ross T. Whitaker
GAN
18
8
0
28 Oct 2020
12
Next