Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.11428
Cited By
Resampled Priors for Variational Autoencoders
26 October 2018
Matthias Bauer
A. Mnih
BDL
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Resampled Priors for Variational Autoencoders"
50 / 85 papers shown
Title
Unsupervised Anomaly Detection in Multivariate Time Series across Heterogeneous Domains
Vincent Jacob
Y. Diao
AI4TS
46
0
0
29 Mar 2025
Studying Classifier(-Free) Guidance From a Classifier-Centric Perspective
Xiaoming Zhao
Alexander Schwing
FaML
63
0
0
13 Mar 2025
Hierarchical VAE with a Diffusion-based VampPrior
Anna Kuzina
Jakub M. Tomczak
DiffM
TPM
BDL
92
1
0
02 Dec 2024
Learning Latent Space Hierarchical EBM Diffusion Models
Jiali Cui
Tian Han
DiffM
48
2
0
22 May 2024
You Only Sample Once: Taming One-Step Text-to-Image Synthesis by Self-Cooperative Diffusion GANs
Yihong Luo
Xiaolong Chen
Xinghua Qu
Jing Tang
61
6
0
19 Mar 2024
Monotone, Bi-Lipschitz, and Polyak-Lojasiewicz Networks
Ruigang Wang
Krishnamurthy Dvijotham
I. Manchester
36
5
0
02 Feb 2024
Matching aggregate posteriors in the variational autoencoder
Surojit Saha
Sarang Joshi
Ross T. Whitaker
DRL
37
4
0
13 Nov 2023
Topology-Matching Normalizing Flows for Out-of-Distribution Detection in Robot Learning
Jianxiang Feng
Jongseok Lee
Simon Geisler
Stephan Gunnemann
Rudolph Triebel
OODD
32
4
0
11 Nov 2023
Reparameterized Variational Rejection Sampling
M. Jankowiak
Du Phan
DRL
BDL
24
1
0
26 Sep 2023
Diffusion Models with Deterministic Normalizing Flow Priors
Mohsen Zand
Ali Etemad
Michael A. Greenspan
DiffM
34
2
0
03 Sep 2023
On the Approximation of Bi-Lipschitz Maps by Invertible Neural Networks
Bangti Jin
Zehui Zhou
Jun Zou
26
3
0
18 Aug 2023
Deep Probabilistic Movement Primitives with a Bayesian Aggregator
Michael Przystupa
Faezeh Haghverd
Martin Jägersand
Samuele Tosatto
21
6
0
11 Jul 2023
Unscented Autoencoder
Faris Janjos
Lars Rosenbaum
Maxim Dolgov
J. Marius Zöllner
21
2
0
08 Jun 2023
Learning Manifold Dimensions with Conditional Variational Autoencoders
Yijia Zheng
Tong He
Yixuan Qiu
David Wipf
DRL
24
17
0
23 Feb 2023
The Sample Complexity of Approximate Rejection Sampling with Applications to Smoothed Online Learning
Adam Block
Yury Polyanskiy
39
7
0
09 Feb 2023
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
Ba-Hien Tran
Babak Shahbaba
Stephan Mandt
Maurizio Filippone
SyDa
BDL
UQCV
28
5
0
09 Feb 2023
Refining Generative Process with Discriminator Guidance in Score-based Diffusion Models
Dongjun Kim
Yeongmin Kim
Se Jung Kwon
Wanmo Kang
Il-Chul Moon
DiffM
44
86
0
28 Nov 2022
Latent Space Diffusion Models of Cryo-EM Structures
Karsten Kreis
Tim Dockhorn
Zihao Li
Ellen D. Zhong
DiffM
35
15
0
25 Nov 2022
Improving Variational Autoencoders with Density Gap-based Regularization
Jianfei Zhang
Jun Bai
Chenghua Lin
Yanmeng Wang
Wenge Rong
DRL
36
4
0
01 Nov 2022
LION: Latent Point Diffusion Models for 3D Shape Generation
Fangyin Wei
Arash Vahdat
Francis Williams
Zan Gojcic
Or Litany
Sanja Fidler
Karsten Kreis
DiffM
73
489
0
12 Oct 2022
Cooperation in the Latent Space: The Benefits of Adding Mixture Components in Variational Autoencoders
Oskar Kviman
Ricky Molén
A. Hotti
Semih Kurt
Victor Elvira
J. Lagergren
32
11
0
30 Sep 2022
Adaptive Multi-stage Density Ratio Estimation for Learning Latent Space Energy-based Model
Zhisheng Xiao
Tian Han
61
15
0
19 Sep 2022
A Geometric Perspective on Variational Autoencoders
Clément Chadebec
S. Allassonnière
DRL
37
21
0
15 Sep 2022
Comparing the latent space of generative models
Andrea Asperti
Valerio Tonelli
DRL
26
12
0
14 Jul 2022
Bottlenecks CLUB: Unifying Information-Theoretic Trade-offs Among Complexity, Leakage, and Utility
Behrooz Razeghi
Flavio du Pin Calmon
Deniz Gunduz
Slava Voloshynovskiy
29
15
0
11 Jul 2022
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Clément Chadebec
Louis J. Vincent
S. Allassonnière
DRL
34
29
0
16 Jun 2022
Local Distance Preserving Auto-encoders using Continuous k-Nearest Neighbours Graphs
Nutan Chen
Patrick van der Smagt
Botond Cseke
CLL
18
2
0
13 Jun 2022
Variational Sparse Coding with Learned Thresholding
Kion Fallah
Christopher Rozell
DRL
36
7
0
07 May 2022
Particle algorithms for maximum likelihood training of latent variable models
Juan Kuntz
Jen Ning Lim
A. M. Johansen
FedML
13
21
0
27 Apr 2022
Universal approximation property of invertible neural networks
Isao Ishikawa
Takeshi Teshima
Koichi Tojo
Kenta Oono
Masahiro Ikeda
Masashi Sugiyama
46
29
0
15 Apr 2022
Multiple Importance Sampling ELBO and Deep Ensembles of Variational Approximations
Oskar Kviman
Harald Melin
Hazal Koptagel
Victor Elvira
J. Lagergren
DRL
75
17
0
22 Feb 2022
VAEL: Bridging Variational Autoencoders and Probabilistic Logic Programming
Eleonora Misino
G. Marra
Emanuele Sansone
24
21
0
07 Feb 2022
DiffuseVAE: Efficient, Controllable and High-Fidelity Generation from Low-Dimensional Latents
Kushagra Pandey
Avideep Mukherjee
Piyush Rai
Abhishek Kumar
DiffM
33
114
0
02 Jan 2022
Resampling Base Distributions of Normalizing Flows
Vincent Stimper
Bernhard Schölkopf
José Miguel Hernández-Lobato
BDL
30
32
0
29 Oct 2021
Momentum Contrastive Autoencoder: Using Contrastive Learning for Latent Space Distribution Matching in WAE
Devansh Arpit
Aadyot Bhatnagar
Huan Wang
Caiming Xiong
18
0
0
19 Oct 2021
Regularising Inverse Problems with Generative Machine Learning Models
Margaret Duff
Neill D. F. Campbell
Matthias Joachim Ehrhardt
GAN
MedIm
29
34
0
22 Jul 2021
ByPE-VAE: Bayesian Pseudocoresets Exemplar VAE
Qingzhong Ai
Lirong He
Shiyu Liu
Zenglin Xu
BDL
19
2
0
20 Jul 2021
On Incorporating Inductive Biases into VAEs
Ning Miao
Emile Mathieu
N. Siddharth
Yee Whye Teh
Tom Rainforth
CML
DRL
30
10
0
25 Jun 2021
Model Selection for Bayesian Autoencoders
Ba-Hien Tran
Simone Rossi
Dimitrios Milios
Pietro Michiardi
Edwin V. Bonilla
Maurizio Filippone
BDL
23
12
0
11 Jun 2021
Score-based Generative Modeling in Latent Space
Arash Vahdat
Karsten Kreis
Jan Kautz
DiffM
16
659
0
10 Jun 2021
Local Disentanglement in Variational Auto-Encoders Using Jacobian
L
1
L_1
L
1
Regularization
Travers Rhodes
Daniel D. Lee
DRL
19
15
0
05 Jun 2021
Variational Leakage: The Role of Information Complexity in Privacy Leakage
A. A. Atashin
Behrooz Razeghi
Deniz Gunduz
Slava Voloshynovskiy
PILM
16
9
0
05 Jun 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
31
124
0
14 May 2021
Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Clément Chadebec
Elina Thibeau-Sutre
Ninon Burgos
S. Allassonnière
38
62
0
30 Apr 2021
Distantly Supervised Relation Extraction with Sentence Reconstruction and Knowledge Base Priors
Fenia Christopoulou
Makoto Miwa
Sophia Ananiadou
43
20
0
16 Apr 2021
Variational Rejection Particle Filtering
Rahul Sharma
S. Banerjee
Dootika Vats
Piyush Rai
BDL
27
0
0
29 Mar 2021
A prior-based approximate latent Riemannian metric
Georgios Arvanitidis
B. Georgiev
Bernhard Schölkopf
MedIm
14
11
0
09 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
41
483
0
08 Mar 2021
A survey on Variational Autoencoders from a GreenAI perspective
Andrea Asperti
David Evangelista
E. Loli Piccolomini
DRL
13
51
0
01 Mar 2021
GENs: Generative Encoding Networks
Surojit Saha
Shireen Y. Elhabian
Ross T. Whitaker
GAN
18
8
0
28 Oct 2020
1
2
Next