Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.02054
Cited By
v1
v2 (latest)
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
4 October 2018
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Gradient Descent Provably Optimizes Over-parameterized Neural Networks"
50 / 882 papers shown
Title
Exact Convergence Rates of the Neural Tangent Kernel in the Large Depth Limit
Soufiane Hayou
Arnaud Doucet
Judith Rousseau
106
4
0
31 May 2019
What Can Neural Networks Reason About?
Keyulu Xu
Jingling Li
Mozhi Zhang
S. Du
Ken-ichi Kawarabayashi
Stefanie Jegelka
NAI
AI4CE
110
248
0
30 May 2019
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks
Yuan Cao
Quanquan Gu
MLT
AI4CE
131
392
0
30 May 2019
Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels
S. Du
Kangcheng Hou
Barnabás Póczós
Ruslan Salakhutdinov
Ruosong Wang
Keyulu Xu
142
276
0
30 May 2019
Generalization bounds for deep convolutional neural networks
Philip M. Long
Hanie Sedghi
MLT
136
90
0
29 May 2019
Norm-based generalisation bounds for multi-class convolutional neural networks
Antoine Ledent
Waleed Mustafa
Yunwen Lei
Marius Kloft
66
5
0
29 May 2019
On the Inductive Bias of Neural Tangent Kernels
A. Bietti
Julien Mairal
128
260
0
29 May 2019
Gram-Gauss-Newton Method: Learning Overparameterized Neural Networks for Regression Problems
Tianle Cai
Ruiqi Gao
Jikai Hou
Siyu Chen
Dong Wang
Di He
Zhihua Zhang
Liwei Wang
ODL
76
57
0
28 May 2019
Simple and Effective Regularization Methods for Training on Noisily Labeled Data with Generalization Guarantee
Wei Hu
Zhiyuan Li
Dingli Yu
NoLa
113
12
0
27 May 2019
Fast Convergence of Natural Gradient Descent for Overparameterized Neural Networks
Guodong Zhang
James Martens
Roger C. Grosse
ODL
113
126
0
27 May 2019
Temporal-difference learning with nonlinear function approximation: lazy training and mean field regimes
Andrea Agazzi
Jianfeng Lu
98
8
0
27 May 2019
On Learning Over-parameterized Neural Networks: A Functional Approximation Perspective
Lili Su
Pengkun Yang
MLT
80
54
0
26 May 2019
Enhancing Adversarial Defense by k-Winners-Take-All
Chang Xiao
Peilin Zhong
Changxi Zheng
AAML
80
99
0
25 May 2019
What Can ResNet Learn Efficiently, Going Beyond Kernels?
Zeyuan Allen-Zhu
Yuanzhi Li
418
183
0
24 May 2019
On the Learning Dynamics of Two-layer Nonlinear Convolutional Neural Networks
Ting Yu
Junzhao Zhang
Zhanxing Zhu
MLT
44
5
0
24 May 2019
Gradient Descent can Learn Less Over-parameterized Two-layer Neural Networks on Classification Problems
Atsushi Nitanda
Geoffrey Chinot
Taiji Suzuki
MLT
105
34
0
23 May 2019
A type of generalization error induced by initialization in deep neural networks
Yaoyu Zhang
Zhi-Qin John Xu
Yaoyu Zhang
Zheng Ma
128
51
0
19 May 2019
An Essay on Optimization Mystery of Deep Learning
Eugene Golikov
ODL
30
0
0
17 May 2019
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation
Colin Wei
Tengyu Ma
87
110
0
09 May 2019
Rethinking Arithmetic for Deep Neural Networks
George A. Constantinides
64
4
0
07 May 2019
Linearized two-layers neural networks in high dimension
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
97
243
0
27 Apr 2019
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
294
928
0
26 Apr 2019
The Impact of Neural Network Overparameterization on Gradient Confusion and Stochastic Gradient Descent
Karthik A. Sankararaman
Soham De
Zheng Xu
Wenjie Huang
Tom Goldstein
ODL
120
106
0
15 Apr 2019
Analysis of the Gradient Descent Algorithm for a Deep Neural Network Model with Skip-connections
E. Weinan
Chao Ma
Qingcan Wang
Lei Wu
MLT
108
22
0
10 Apr 2019
A Comparative Analysis of the Optimization and Generalization Property of Two-layer Neural Network and Random Feature Models Under Gradient Descent Dynamics
E. Weinan
Chao Ma
Lei Wu
MLT
85
124
0
08 Apr 2019
Correlation Congruence for Knowledge Distillation
Baoyun Peng
Xiao Jin
Jiaheng Liu
Shunfeng Zhou
Yichao Wu
Yu Liu
Dongsheng Li
Zhaoning Zhang
100
515
0
03 Apr 2019
Convergence rates for the stochastic gradient descent method for non-convex objective functions
Benjamin J. Fehrman
Benjamin Gess
Arnulf Jentzen
98
101
0
02 Apr 2019
On the Power and Limitations of Random Features for Understanding Neural Networks
Gilad Yehudai
Ohad Shamir
MLT
125
182
0
01 Apr 2019
On the Stability and Generalization of Learning with Kernel Activation Functions
M. Cirillo
Simone Scardapane
S. Van Vaerenbergh
A. Uncini
20
0
0
28 Mar 2019
Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks
Mingchen Li
Mahdi Soltanolkotabi
Samet Oymak
NoLa
140
356
0
27 Mar 2019
Surprises in High-Dimensional Ridgeless Least Squares Interpolation
Trevor Hastie
Andrea Montanari
Saharon Rosset
Robert Tibshirani
302
747
0
19 Mar 2019
Stabilize Deep ResNet with A Sharp Scaling Factor
τ
τ
τ
Huishuai Zhang
Da Yu
Mingyang Yi
Wei Chen
Tie-Yan Liu
57
9
0
17 Mar 2019
Theory III: Dynamics and Generalization in Deep Networks
Andrzej Banburski
Q. Liao
Alycia Lee
Lorenzo Rosasco
Fernanda De La Torre
Jack Hidary
T. Poggio
AI4CE
74
3
0
12 Mar 2019
Mean Field Analysis of Deep Neural Networks
Justin A. Sirignano
K. Spiliopoulos
109
82
0
11 Mar 2019
A Priori Estimates of the Population Risk for Residual Networks
E. Weinan
Chao Ma
Qingcan Wang
UQCV
103
61
0
06 Mar 2019
Why Learning of Large-Scale Neural Networks Behaves Like Convex Optimization
Hui Jiang
28
8
0
06 Mar 2019
Implicit Regularization in Over-parameterized Neural Networks
M. Kubo
Ryotaro Banno
Hidetaka Manabe
Masataka Minoji
88
23
0
05 Mar 2019
Stabilizing the Lottery Ticket Hypothesis
Jonathan Frankle
Gintare Karolina Dziugaite
Daniel M. Roy
Michael Carbin
88
103
0
05 Mar 2019
LipschitzLR: Using theoretically computed adaptive learning rates for fast convergence
Rahul Yedida
Snehanshu Saha
Tejas Prashanth
ODL
53
12
0
20 Feb 2019
Global Convergence of Adaptive Gradient Methods for An Over-parameterized Neural Network
Xiaoxia Wu
S. Du
Rachel A. Ward
103
66
0
19 Feb 2019
Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
90
280
0
16 Feb 2019
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
Greg Yang
209
289
0
13 Feb 2019
Identity Crisis: Memorization and Generalization under Extreme Overparameterization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Michael C. Mozer
Y. Singer
60
90
0
13 Feb 2019
Towards moderate overparameterization: global convergence guarantees for training shallow neural networks
Samet Oymak
Mahdi Soltanolkotabi
79
323
0
12 Feb 2019
Understanding over-parameterized deep networks by geometrization
Xiao Dong
Ling Zhou
GNN
AI4CE
45
7
0
11 Feb 2019
Mean Field Limit of the Learning Dynamics of Multilayer Neural Networks
Phan-Minh Nguyen
AI4CE
82
72
0
07 Feb 2019
Are All Layers Created Equal?
Chiyuan Zhang
Samy Bengio
Y. Singer
111
140
0
06 Feb 2019
Generalization Error Bounds of Gradient Descent for Learning Over-parameterized Deep ReLU Networks
Yuan Cao
Quanquan Gu
ODL
MLT
AI4CE
156
158
0
04 Feb 2019
Stiffness: A New Perspective on Generalization in Neural Networks
Stanislav Fort
Pawel Krzysztof Nowak
Stanislaw Jastrzebski
S. Narayanan
152
94
0
28 Jan 2019
Dynamical Isometry and a Mean Field Theory of LSTMs and GRUs
D. Gilboa
B. Chang
Minmin Chen
Greg Yang
S. Schoenholz
Ed H. Chi
Jeffrey Pennington
86
42
0
25 Jan 2019
Previous
1
2
3
...
16
17
18
Next