Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.02054
Cited By
v1
v2 (latest)
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
4 October 2018
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Gradient Descent Provably Optimizes Over-parameterized Neural Networks"
50 / 882 papers shown
Title
Addressing the Inconsistency in Bayesian Deep Learning via Generalized Laplace Approximation
Yinsong Chen
Samson S. Yu
Zhong Li
Chee Peng Lim
BDL
80
0
0
01 Jul 2025
Generalization Bound of Gradient Flow through Training Trajectory and Data-dependent Kernel
Yilan Chen
Zhichao Wang
Wei Huang
Andi Han
Taiji Suzuki
Arya Mazumdar
MLT
24
0
0
12 Jun 2025
Sharper Convergence Rates for Nonconvex Optimisation via Reduction Mappings
Evan Markou
Thalaiyasingam Ajanthan
Stephen Gould
31
0
0
10 Jun 2025
Come Together, But Not Right Now: A Progressive Strategy to Boost Low-Rank Adaptation
Zhan Zhuang
Xiequn Wang
Wei Li
Yulong Zhang
Qiushi Huang
...
Yanbin Wei
Yuhe Nie
Kede Ma
Yu Zhang
Ying Wei
57
0
0
06 Jun 2025
Implicit Regularization of the Deep Inverse Prior Trained with Inertia
Nathan Buskulic
Jalal Fadil
Yvain Quéau
47
1
0
03 Jun 2025
SGD as Free Energy Minimization: A Thermodynamic View on Neural Network Training
Ildus Sadrtdinov
Ivan Klimov
E. Lobacheva
Dmitry Vetrov
32
0
0
29 May 2025
Benignity of loss landscape with weight decay requires both large overparametrization and initialization
Etienne Boursier
Matthew Bowditch
Matthias Englert
R. Lazic
42
0
0
28 May 2025
Assessing Quantum Advantage for Gaussian Process Regression
Dominic Lowe
M.S. Kim
Roberto Bondesan
36
1
0
28 May 2025
Saddle-To-Saddle Dynamics in Deep ReLU Networks: Low-Rank Bias in the First Saddle Escape
Ioannis Bantzis
James B. Simon
Arthur Jacot
ODL
54
0
0
27 May 2025
Convexified Message-Passing Graph Neural Networks
Saar Cohen
Noa Agmon
Uri Shaham
GNN
41
0
0
23 May 2025
Convergence of Adam in Deep ReLU Networks via Directional Complexity and Kakeya Bounds
Anupama Sridhar
Alexander Johansen
80
0
0
21 May 2025
New Evidence of the Two-Phase Learning Dynamics of Neural Networks
Zhanpeng Zhou
Yongyi Yang
Mahito Sugiyama
Junchi Yan
35
0
0
20 May 2025
A Local Polyak-Lojasiewicz and Descent Lemma of Gradient Descent For Overparametrized Linear Models
Ziqing Xu
Hancheng Min
Salma Tarmoun
Enrique Mallada
Rene Vidal
125
0
0
16 May 2025
The Power of Random Features and the Limits of Distribution-Free Gradient Descent
Ari Karchmer
Eran Malach
89
0
0
15 May 2025
Neural Multivariate Regression: Qualitative Insights from the Unconstrained Feature Model
Shuyang Ling
Soyuj Jung Basnet
Juan Guevara
Li Guo
George Andriopoulos
81
0
0
14 May 2025
Information-theoretic reduction of deep neural networks to linear models in the overparametrized proportional regime
Francesco Camilli
D. Tieplova
Eleonora Bergamin
Jean Barbier
418
2
0
06 May 2025
Deep Learning Optimization Using Self-Adaptive Weighted Auxiliary Variables
Yaru Liu
Yiqi Gu
Michael K. Ng
ODL
89
0
0
30 Apr 2025
Deep learning with missing data
Tianyi Ma
Tengyao Wang
R. Samworth
271
1
0
21 Apr 2025
Divergence of Empirical Neural Tangent Kernel in Classification Problems
Zixiong Yu
Songtao Tian
Guhan Chen
70
0
0
15 Apr 2025
Towards Understanding the Optimization Mechanisms in Deep Learning
Binchuan Qi
Wei Gong
Li Li
95
0
0
29 Mar 2025
Feature Learning beyond the Lazy-Rich Dichotomy: Insights from Representational Geometry
Chi-Ning Chou
Hang Le
Yichen Wang
SueYeon Chung
92
0
0
23 Mar 2025
NeuroSep-CP-LCB: A Deep Learning-based Contextual Multi-armed Bandit Algorithm with Uncertainty Quantification for Early Sepsis Prediction
Anni Zhou
Raheem Beyah
Rishikesan Kamaleswaran
103
0
0
20 Mar 2025
On the Cone Effect in the Learning Dynamics
Zhanpeng Zhou
Yongyi Yang
Jie Ren
Mahito Sugiyama
Junchi Yan
116
0
0
20 Mar 2025
Neural Tangent Kernel of Neural Networks with Loss Informed by Differential Operators
Weiye Gan
Yicheng Li
Q. Lin
Zuoqiang Shi
75
0
0
14 Mar 2025
Global Convergence and Rich Feature Learning in
L
L
L
-Layer Infinite-Width Neural Networks under
μ
μ
μ
P Parametrization
Zixiang Chen
Greg Yang
Qingyue Zhao
Q. Gu
MLT
86
0
0
12 Mar 2025
A Near Complete Nonasymptotic Generalization Theory For Multilayer Neural Networks: Beyond the Bias-Variance Tradeoff
Hao Yu
Xiangyang Ji
AI4CE
79
0
0
03 Mar 2025
Scaling Law Phenomena Across Regression Paradigms: Multiple and Kernel Approaches
Yifang Chen
Xuyang Guo
Xiaoyu Li
Yingyu Liang
Zhenmei Shi
Zhao Song
103
3
0
03 Mar 2025
On the Saturation Effects of Spectral Algorithms in Large Dimensions
Weihao Lu
Haobo Zhang
Yicheng Li
Q. Lin
109
2
0
01 Mar 2025
Low-rank bias, weight decay, and model merging in neural networks
Ilja Kuzborskij
Yasin Abbasi-Yadkori
81
0
0
24 Feb 2025
Convergence of Shallow ReLU Networks on Weakly Interacting Data
Léo Dana
Francis R. Bach
Loucas Pillaud-Vivien
MLT
95
2
0
24 Feb 2025
Mesterséges Intelligencia Kutatások Magyarországon
András A. Benczúr
Tibor Gyimóthy
Balázs Szegedy
VLM
103
0
0
24 Feb 2025
Explainable Neural Networks with Guarantees: A Sparse Estimation Approach
Antoine Ledent
Peng Liu
FAtt
355
0
0
20 Feb 2025
Curse of Dimensionality in Neural Network Optimization
Sanghoon Na
Haizhao Yang
89
0
0
07 Feb 2025
Mean-Field Analysis for Learning Subspace-Sparse Polynomials with Gaussian Input
Ziang Chen
Rong Ge
MLT
152
1
0
10 Jan 2025
A Riemannian Optimization Perspective of the Gauss-Newton Method for Feedforward Neural Networks
Semih Cayci
139
0
0
18 Dec 2024
Gradient Descent Finds Over-Parameterized Neural Networks with Sharp Generalization for Nonparametric Regression
Yingzhen Yang
Ping Li
MLT
107
0
0
05 Nov 2024
Generalizability of Memorization Neural Networks
Lijia Yu
Xiao-Shan Gao
Lijun Zhang
Yibo Miao
99
1
0
01 Nov 2024
CopRA: A Progressive LoRA Training Strategy
Zhan Zhuang
Xiequn Wang
Yulong Zhang
Wei Li
Yu Zhang
Ying Wei
114
1
0
30 Oct 2024
Inductive Gradient Adjustment For Spectral Bias In Implicit Neural Representations
Kexuan Shi
Hai Chen
Leheng Zhang
Shuhang Gu
95
1
0
17 Oct 2024
Towards Sharper Risk Bounds for Minimax Problems
Bowei Zhu
Shaojie Li
Yong Liu
76
0
0
11 Oct 2024
Adversarial Training Can Provably Improve Robustness: Theoretical Analysis of Feature Learning Process Under Structured Data
Binghui Li
Yuanzhi Li
OOD
94
4
0
11 Oct 2024
On the Impacts of the Random Initialization in the Neural Tangent Kernel Theory
Guhan Chen
Yicheng Li
Qian Lin
AAML
73
1
0
08 Oct 2024
Extended convexity and smoothness and their applications in deep learning
Binchuan Qi
Wei Gong
Li Li
117
0
0
08 Oct 2024
From Lazy to Rich: Exact Learning Dynamics in Deep Linear Networks
Clémentine Dominé
Nicolas Anguita
A. Proca
Lukas Braun
D. Kunin
P. Mediano
Andrew M. Saxe
138
6
0
22 Sep 2024
On the Convergence Analysis of Over-Parameterized Variational Autoencoders: A Neural Tangent Kernel Perspective
Li Wang
Wei Huang
DRL
99
0
0
09 Sep 2024
Beyond Unconstrained Features: Neural Collapse for Shallow Neural Networks with General Data
Wanli Hong
Shuyang Ling
71
4
0
03 Sep 2024
Improving Adaptivity via Over-Parameterization in Sequence Models
Yicheng Li
Qian Lin
84
1
0
02 Sep 2024
On the Pinsker bound of inner product kernel regression in large dimensions
Weihao Lu
Jialin Ding
Haobo Zhang
Qian Lin
93
1
0
02 Sep 2024
Absence of Closed-Form Descriptions for Gradient Flow in Two-Layer Narrow Networks
Yeachan Park
AI4CE
119
0
0
15 Aug 2024
Hybrid Coordinate Descent for Efficient Neural Network Learning Using Line Search and Gradient Descent
Yen-Che Hsiao
Abhishek Dutta
106
0
0
02 Aug 2024
1
2
3
4
...
16
17
18
Next