ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.02438
30
4

Rethinking Arithmetic for Deep Neural Networks

7 May 2019
George A. Constantinides
ArXivPDFHTML
Abstract

We consider efficiency in the implementation of deep neural networks. Hardware accelerators are gaining interest as machine learning becomes one of the drivers of high-performance computing. In these accelerators, the directed graph describing a neural network can be implemented as a directed graph describing a Boolean circuit. We make this observation precise, leading naturally to an understanding of practical neural networks as discrete functions, and show that so-called binarised neural networks are functionally complete. In general, our results suggest that it is valuable to consider Boolean circuits as neural networks, leading to the question of which circuit topologies are promising. We argue that continuity is central to generalisation in learning, explore the interaction between data coding, network topology, and node functionality for continuity, and pose some open questions for future research. As a first step to bridging the gap between continuous and Boolean views of neural network accelerators, we present some recent results from our work on LUTNet, a novel Field-Programmable Gate Array inference approach. Finally, we conclude with additional possible fruitful avenues for research bridging the continuous and discrete views of neural networks.

View on arXiv
Comments on this paper