ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.12600
37
89

Generalization bounds for deep convolutional neural networks

29 May 2019
Philip M. Long
Hanie Sedghi
    MLT
ArXivPDFHTML
Abstract

We prove bounds on the generalization error of convolutional networks. The bounds are in terms of the training loss, the number of parameters, the Lipschitz constant of the loss and the distance from the weights to the initial weights. They are independent of the number of pixels in the input, and the height and width of hidden feature maps. We present experiments using CIFAR-10 with varying hyperparameters of a deep convolutional network, comparing our bounds with practical generalization gaps.

View on arXiv
Comments on this paper