Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.02054
Cited By
v1
v2 (latest)
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
4 October 2018
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Gradient Descent Provably Optimizes Over-parameterized Neural Networks"
50 / 882 papers shown
Title
How DNNs break the Curse of Dimensionality: Compositionality and Symmetry Learning
Arthur Jacot
Seok Hoan Choi
Yuxiao Wen
AI4CE
143
2
0
08 Jul 2024
Evaluating the design space of diffusion-based generative models
Yuqing Wang
Ye He
Molei Tao
DiffM
101
6
0
18 Jun 2024
Precise analysis of ridge interpolators under heavy correlations -- a Random Duality Theory view
Mihailo Stojnic
54
1
0
13 Jun 2024
Ridge interpolators in correlated factor regression models -- exact risk analysis
Mihailo Stojnic
62
1
0
13 Jun 2024
Large Stepsize Gradient Descent for Non-Homogeneous Two-Layer Networks: Margin Improvement and Fast Optimization
Yuhang Cai
Jingfeng Wu
Song Mei
Michael Lindsey
Peter L. Bartlett
91
4
0
12 Jun 2024
Loss Gradient Gaussian Width based Generalization and Optimization Guarantees
A. Banerjee
Qiaobo Li
Yingxue Zhou
162
0
0
11 Jun 2024
Stable Minima Cannot Overfit in Univariate ReLU Networks: Generalization by Large Step Sizes
Dan Qiao
Kaiqi Zhang
Esha Singh
Daniel Soudry
Yu-Xiang Wang
NoLa
89
4
0
10 Jun 2024
Get rich quick: exact solutions reveal how unbalanced initializations promote rapid feature learning
D. Kunin
Allan Raventós
Clémentine Dominé
Feng Chen
David Klindt
Andrew M. Saxe
Surya Ganguli
MLT
129
18
0
10 Jun 2024
Error Bounds of Supervised Classification from Information-Theoretic Perspective
Binchuan Qi
Wei Gong
Li Li
60
0
0
07 Jun 2024
Cyclic Sparse Training: Is it Enough?
Advait Gadhikar
Sree Harsha Nelaturu
R. Burkholz
CLL
101
0
0
04 Jun 2024
Improving Generalization and Convergence by Enhancing Implicit Regularization
Mingze Wang
Haotian He
Jinbo Wang
Zilin Wang
Guanhua Huang
Feiyu Xiong
Zhiyu Li
E. Weinan
Lei Wu
96
8
0
31 May 2024
Recurrent Natural Policy Gradient for POMDPs
Semih Cayci
A. Eryilmaz
91
1
0
28 May 2024
Mixed Dynamics In Linear Networks: Unifying the Lazy and Active Regimes
Zhenfeng Tu
Santiago Aranguri
Arthur Jacot
67
11
0
27 May 2024
SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning
Shuai Zhang
Heshan Devaka Fernando
Miao Liu
K. Murugesan
Songtao Lu
Pin-Yu Chen
Tianyi Chen
Meng Wang
75
2
0
24 May 2024
Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime
A. Shilton
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
62
11
0
24 May 2024
Bounds for the smallest eigenvalue of the NTK for arbitrary spherical data of arbitrary dimension
Kedar Karhadkar
Michael Murray
Guido Montúfar
105
3
0
23 May 2024
Approximation and Gradient Descent Training with Neural Networks
G. Welper
64
1
0
19 May 2024
Error Analysis of Three-Layer Neural Network Trained with PGD for Deep Ritz Method
Yuling Jiao
Yanming Lai
Yang Wang
AI4CE
45
1
0
19 May 2024
Train Faster, Perform Better: Modular Adaptive Training in Over-Parameterized Models
Yubin Shi
Yixuan Chen
Mingzhi Dong
Xiaochen Yang
Dongsheng Li
...
Yingying Zhao
Fan Yang
Tun Lu
Ning Gu
L. Shang
MoMe
81
4
0
13 May 2024
An Improved Finite-time Analysis of Temporal Difference Learning with Deep Neural Networks
Zhifa Ke
Zaiwen Wen
Junyu Zhang
88
0
0
07 May 2024
Differentially Private Federated Learning without Noise Addition: When is it Possible?
Jiang Zhang
Konstantinos Psounis
FedML
107
0
0
06 May 2024
Graph is all you need? Lightweight data-agnostic neural architecture search without training
Zhenhan Huang
Tejaswini Pedapati
Pin-Yu Chen
Chunheng Jiang
Jianxi Gao
GNN
88
1
0
02 May 2024
Neural Dynamic Data Valuation
Zhangyong Liang
Huanhuan Gao
Ji Zhang
TDI
88
1
0
30 Apr 2024
On the Rashomon ratio of infinite hypothesis sets
Evzenie Coupkova
Mireille Boutin
70
1
0
27 Apr 2024
Regularized Gauss-Newton for Optimizing Overparameterized Neural Networks
Adeyemi Damilare Adeoye
Philipp Christian Petersen
Alberto Bemporad
65
1
0
23 Apr 2024
The Positivity of the Neural Tangent Kernel
Luís Carvalho
Joao L. Costa
José Mourao
Gonccalo Oliveira
86
3
0
19 Apr 2024
The phase diagram of kernel interpolation in large dimensions
Haobo Zhang
Weihao Lu
Qian Lin
76
6
0
19 Apr 2024
Learning epidemic trajectories through Kernel Operator Learning: from modelling to optimal control
Giovanni Ziarelli
N. Parolini
M. Verani
106
2
0
17 Apr 2024
Regularized Gradient Clipping Provably Trains Wide and Deep Neural Networks
Matteo Tucat
Anirbit Mukherjee
Procheta Sen
Mingfei Sun
Omar Rivasplata
MLT
91
1
0
12 Apr 2024
Understanding the Learning Dynamics of Alignment with Human Feedback
Shawn Im
Yixuan Li
ALM
107
14
0
27 Mar 2024
Robust NAS under adversarial training: benchmark, theory, and beyond
Yongtao Wu
Fanghui Liu
Carl-Johann Simon-Gabriel
Grigorios G. Chrysos
Volkan Cevher
AAML
OOD
92
5
0
19 Mar 2024
NTK-Guided Few-Shot Class Incremental Learning
Jingren Liu
Zhong Ji
Yanwei Pang
YunLong Yu
CLL
95
4
0
19 Mar 2024
Generalization of Scaled Deep ResNets in the Mean-Field Regime
Yihang Chen
Fanghui Liu
Yiping Lu
Grigorios G. Chrysos
Volkan Cevher
71
2
0
14 Mar 2024
Recovery Guarantees of Unsupervised Neural Networks for Inverse Problems trained with Gradient Descent
Nathan Buskulic
M. Fadili
Yvain Quéau
85
1
0
08 Mar 2024
KIWI: A Dataset of Knowledge-Intensive Writing Instructions for Answering Research Questions
Fangyuan Xu
Kyle Lo
Luca Soldaini
Bailey Kuehl
Eunsol Choi
David Wadden
84
9
0
06 Mar 2024
The Implicit Bias of Heterogeneity towards Invariance: A Study of Multi-Environment Matrix Sensing
Yang Xu
Yihong Gu
Cong Fang
93
0
0
03 Mar 2024
Merging Text Transformer Models from Different Initializations
Neha Verma
Maha Elbayad
MoMe
119
8
0
01 Mar 2024
Masks, Signs, And Learning Rate Rewinding
Advait Gadhikar
R. Burkholz
100
10
0
29 Feb 2024
Uncertainty Quantification of Graph Convolution Neural Network Models of Evolving Processes
J. Hauth
Cosmin Safta
Xun Huan
Ravi G. Patel
Reese E. Jones
BDL
UQCV
82
2
0
17 Feb 2024
Fixed width treelike neural networks capacity analysis -- generic activations
M. Stojnic
64
3
0
08 Feb 2024
Non-convergence to global minimizers for Adam and stochastic gradient descent optimization and constructions of local minimizers in the training of artificial neural networks
Arnulf Jentzen
Adrian Riekert
71
4
0
07 Feb 2024
Analyzing the Neural Tangent Kernel of Periodically Activated Coordinate Networks
Hemanth Saratchandran
Shin-Fang Chng
Simon Lucey
100
2
0
07 Feb 2024
Deconstructing the Goldilocks Zone of Neural Network Initialization
Artem Vysogorets
Anna Dawid
Julia Kempe
73
1
0
05 Feb 2024
Data-induced multiscale losses and efficient multirate gradient descent schemes
Juncai He
Liangchen Liu
Yen-Hsi Tsai
90
0
0
05 Feb 2024
Architectural Strategies for the optimization of Physics-Informed Neural Networks
Hemanth Saratchandran
Shin-Fang Chng
Simon Lucey
AI4CE
73
0
0
05 Feb 2024
No Free Prune: Information-Theoretic Barriers to Pruning at Initialization
Tanishq Kumar
Kevin Luo
Mark Sellke
78
3
0
02 Feb 2024
Algebraic Complexity and Neurovariety of Linear Convolutional Networks
Vahid Shahverdi
112
4
0
29 Jan 2024
Neural Network-Based Score Estimation in Diffusion Models: Optimization and Generalization
Yinbin Han
Meisam Razaviyayn
Renyuan Xu
DiffM
138
16
0
28 Jan 2024
A Survey on Statistical Theory of Deep Learning: Approximation, Training Dynamics, and Generative Models
Namjoon Suh
Guang Cheng
MedIm
109
14
0
14 Jan 2024
Weak Correlations as the Underlying Principle for Linearization of Gradient-Based Learning Systems
Ori Shem-Ur
Yaron Oz
63
0
0
08 Jan 2024
Previous
1
2
3
4
5
...
16
17
18
Next