Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.02054
Cited By
v1
v2 (latest)
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
4 October 2018
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Gradient Descent Provably Optimizes Over-parameterized Neural Networks"
32 / 882 papers shown
Title
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
234
974
0
24 Jan 2019
Width Provably Matters in Optimization for Deep Linear Neural Networks
S. Du
Wei Hu
115
95
0
24 Jan 2019
Understanding Geometry of Encoder-Decoder CNNs
J. C. Ye
Woon Kyoung Sung
3DV
AI4CE
88
74
0
22 Jan 2019
Training Neural Networks as Learning Data-adaptive Kernels: Provable Representation and Approximation Benefits
Xialiang Dou
Tengyuan Liang
MLT
83
42
0
21 Jan 2019
Scaling description of generalization with number of parameters in deep learning
Mario Geiger
Arthur Jacot
S. Spigler
Franck Gabriel
Levent Sagun
Stéphane dÁscoli
Giulio Biroli
Clément Hongler
Matthieu Wyart
112
196
0
06 Jan 2019
Analysis of a Two-Layer Neural Network via Displacement Convexity
Adel Javanmard
Marco Mondelli
Andrea Montanari
MLT
119
57
0
05 Jan 2019
A Theoretical Analysis of Deep Q-Learning
Jianqing Fan
Zhuoran Yang
Yuchen Xie
Zhaoran Wang
203
611
0
01 Jan 2019
On the Benefit of Width for Neural Networks: Disappearance of Bad Basins
Dawei Li
Tian Ding
Ruoyu Sun
133
39
0
28 Dec 2018
Overparameterized Nonlinear Learning: Gradient Descent Takes the Shortest Path?
Samet Oymak
Mahdi Soltanolkotabi
ODL
73
177
0
25 Dec 2018
On Lazy Training in Differentiable Programming
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
111
840
0
19 Dec 2018
Deep Geometric Prior for Surface Reconstruction
Francis Williams
T. Schneider
Claudio Silva
Denis Zorin
Joan Bruna
Daniele Panozzo
3DPC
130
191
0
27 Nov 2018
Forward Stability of ResNet and Its Variants
Linan Zhang
Hayden Schaeffer
121
48
0
24 Nov 2018
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
257
448
0
21 Nov 2018
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
Zeyuan Allen-Zhu
Yuanzhi Li
Yingyu Liang
MLT
237
775
0
12 Nov 2018
A Convergence Theory for Deep Learning via Over-Parameterization
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
AI4CE
ODL
306
1,471
0
09 Nov 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
Jason D. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
350
1,137
0
09 Nov 2018
A Geometric Approach of Gradient Descent Algorithms in Linear Neural Networks
S. Mahabadi
Zhenyu Liao
Romain Couillet
50
13
0
08 Nov 2018
On the Convergence Rate of Training Recurrent Neural Networks
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
253
193
0
29 Oct 2018
Subgradient Descent Learns Orthogonal Dictionaries
Yu Bai
Qijia Jiang
Ju Sun
165
51
0
25 Oct 2018
A Modern Take on the Bias-Variance Tradeoff in Neural Networks
Brady Neal
Sarthak Mittal
A. Baratin
Vinayak Tantia
Matthew Scicluna
Simon Lacoste-Julien
Ioannis Mitliagkas
87
168
0
19 Oct 2018
Exchangeability and Kernel Invariance in Trained MLPs
Russell Tsuchida
Fred Roosta
M. Gallagher
25
3
0
19 Oct 2018
Small ReLU networks are powerful memorizers: a tight analysis of memorization capacity
Chulhee Yun
S. Sra
Ali Jadbabaie
160
118
0
17 Oct 2018
Learning Two-layer Neural Networks with Symmetric Inputs
Rong Ge
Rohith Kuditipudi
Zhize Li
Xiang Wang
OOD
MLT
201
59
0
16 Oct 2018
A Priori Estimates of the Population Risk for Two-layer Neural Networks
Weinan E
Chao Ma
Lei Wu
101
132
0
15 Oct 2018
Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel
Colin Wei
Jason D. Lee
Qiang Liu
Tengyu Ma
268
245
0
12 Oct 2018
Unbiased deep solvers for linear parametric PDEs
Marc Sabate Vidales
David Siska
Lukasz Szpruch
OOD
65
8
0
11 Oct 2018
Efficiently testing local optimality and escaping saddles for ReLU networks
Chulhee Yun
S. Sra
Ali Jadbabaie
90
10
0
28 Sep 2018
Learning One-hidden-layer ReLU Networks via Gradient Descent
Xiao Zhang
Yaodong Yu
Lingxiao Wang
Quanquan Gu
MLT
129
135
0
20 Jun 2018
Compressed Sensing with Deep Image Prior and Learned Regularization
Dave Van Veen
A. Jalal
Mahdi Soltanolkotabi
Eric Price
S. Vishwanath
A. Dimakis
139
182
0
17 Jun 2018
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle
Michael Carbin
402
3,494
0
09 Mar 2018
Small nonlinearities in activation functions create bad local minima in neural networks
Chulhee Yun
S. Sra
Ali Jadbabaie
ODL
125
95
0
10 Feb 2018
Global Guarantees for Enforcing Deep Generative Priors by Empirical Risk
Paul Hand
V. Voroninski
UQCV
177
138
0
22 May 2017
Previous
1
2
3
...
16
17
18