Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.02054
Cited By
v1
v2 (latest)
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
4 October 2018
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Gradient Descent Provably Optimizes Over-parameterized Neural Networks"
50 / 882 papers shown
Title
A General Framework for Analyzing Stochastic Dynamics in Learning Algorithms
Chi-Ning Chou
Juspreet Singh Sandhu
Mien Brabeeba Wang
Tiancheng Yu
69
4
0
11 Jun 2020
The Hidden Convex Optimization Landscape of Two-Layer ReLU Neural Networks: an Exact Characterization of the Optimal Solutions
Yifei Wang
Jonathan Lacotte
Mert Pilanci
MLT
91
27
0
10 Jun 2020
H3DNet: 3D Object Detection Using Hybrid Geometric Primitives
Zaiwei Zhang
Bo Sun
Haitao Yang
Qi-Xing Huang
3DPC
112
200
0
10 Jun 2020
Banach Space Representer Theorems for Neural Networks and Ridge Splines
Rahul Parhi
Robert D. Nowak
33
7
0
10 Jun 2020
Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Theory
Yufeng Zhang
Qi Cai
Zhuoran Yang
Yongxin Chen
Zhaoran Wang
OOD
MLT
360
11
0
08 Jun 2020
An Overview of Neural Network Compression
James OÑeill
AI4CE
160
100
0
05 Jun 2020
Hardness of Learning Neural Networks with Natural Weights
Amit Daniely
Gal Vardi
69
19
0
05 Jun 2020
The Effects of Mild Over-parameterization on the Optimization Landscape of Shallow ReLU Neural Networks
Itay Safran
Gilad Yehudai
Ohad Shamir
148
35
0
01 Jun 2020
On the Convergence of Gradient Descent Training for Two-layer ReLU-networks in the Mean Field Regime
Stephan Wojtowytsch
MLT
128
51
0
27 May 2020
Spectra of the Conjugate Kernel and Neural Tangent Kernel for linear-width neural networks
Z. Fan
Zhichao Wang
115
74
0
25 May 2020
Can Shallow Neural Networks Beat the Curse of Dimensionality? A mean field training perspective
Stephan Wojtowytsch
E. Weinan
MLT
72
51
0
21 May 2020
Kolmogorov Width Decay and Poor Approximators in Machine Learning: Shallow Neural Networks, Random Feature Models and Neural Tangent Kernels
E. Weinan
Stephan Wojtowytsch
173
31
0
21 May 2020
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
122
151
0
20 May 2020
Model Repair: Robust Recovery of Over-Parameterized Statistical Models
Chao Gao
John D. Lafferty
44
6
0
20 May 2020
Scalable Privacy-Preserving Distributed Learning
D. Froelicher
J. Troncoso-Pastoriza
Apostolos Pyrgelis
Sinem Sav
João Sá Sousa
Jean-Philippe Bossuat
Jean-Pierre Hubaux
FedML
97
70
0
19 May 2020
Learning the gravitational force law and other analytic functions
Atish Agarwala
Abhimanyu Das
Rina Panigrahy
Qiuyi Zhang
MLT
43
0
0
15 May 2020
RSO: A Gradient Free Sampling Based Approach For Training Deep Neural Networks
Rohun Tripathi
Bharat Singh
40
6
0
12 May 2020
Compressive sensing with un-trained neural networks: Gradient descent finds the smoothest approximation
Reinhard Heckel
Mahdi Soltanolkotabi
75
81
0
07 May 2020
Generalization Error of Generalized Linear Models in High Dimensions
M Motavali Emami
Mojtaba Sahraee-Ardakan
Parthe Pandit
S. Rangan
A. Fletcher
AI4CE
59
39
0
01 May 2020
Optimization in Machine Learning: A Distribution Space Approach
Yongqiang Cai
Qianxiao Li
Zuowei Shen
32
1
0
18 Apr 2020
Machine-learning-based methods for output only structural modal identification
Dawei Liu
Zhiyi Tang
Y. Bao
Hui Li
6
47
0
16 Apr 2020
On the Neural Tangent Kernel of Deep Networks with Orthogonal Initialization
Wei Huang
Weitao Du
R. Xu
74
38
0
13 Apr 2020
Mehler's Formula, Branching Process, and Compositional Kernels of Deep Neural Networks
Tengyuan Liang
Hai Tran-Bach
48
11
0
09 Apr 2020
Analysis of Knowledge Transfer in Kernel Regime
Arman Rahbar
Ashkan Panahi
Chiranjib Bhattacharyya
Devdatt Dubhashi
M. Chehreghani
68
3
0
30 Mar 2020
Memorizing Gaussians with no over-parameterizaion via gradient decent on neural networks
Amit Daniely
VLM
MLT
43
15
0
28 Mar 2020
Piecewise linear activations substantially shape the loss surfaces of neural networks
Fengxiang He
Bohan Wang
Dacheng Tao
ODL
91
30
0
27 Mar 2020
Volumization as a Natural Generalization of Weight Decay
Liu Ziyin
Zihao Wang
M. Yamada
Masahito Ueda
AI4CE
20
0
0
25 Mar 2020
Symmetry & critical points for a model shallow neural network
Yossi Arjevani
M. Field
107
13
0
23 Mar 2020
Neural Networks and Polynomial Regression. Demystifying the Overparametrization Phenomena
Matt Emschwiller
D. Gamarnik
Eren C. Kizildag
Ilias Zadik
77
9
0
23 Mar 2020
Critical Point-Finding Methods Reveal Gradient-Flat Regions of Deep Network Losses
Charles G. Frye
James B. Simon
Neha S. Wadia
A. Ligeralde
M. DeWeese
K. Bouchard
ODL
55
2
0
23 Mar 2020
Steepest Descent Neural Architecture Optimization: Escaping Local Optimum with Signed Neural Splitting
Lemeng Wu
Mao Ye
Qi Lei
Jason D. Lee
Qiang Liu
88
15
0
23 Mar 2020
On Alignment in Deep Linear Neural Networks
Adityanarayanan Radhakrishnan
Eshaan Nichani
D. Bernstein
Caroline Uhler
47
2
0
13 Mar 2020
Frequency Bias in Neural Networks for Input of Non-Uniform Density
Ronen Basri
Meirav Galun
Amnon Geifman
David Jacobs
Yoni Kasten
S. Kritchman
92
186
0
10 Mar 2020
Neural Kernels Without Tangents
Vaishaal Shankar
Alex Fang
Wenshuo Guo
Sara Fridovich-Keil
Ludwig Schmidt
Jonathan Ragan-Kelley
Benjamin Recht
64
91
0
04 Mar 2020
Good Subnetworks Provably Exist: Pruning via Greedy Forward Selection
Mao Ye
Chengyue Gong
Lizhen Nie
Denny Zhou
Adam R. Klivans
Qiang Liu
113
111
0
03 Mar 2020
Overall error analysis for the training of deep neural networks via stochastic gradient descent with random initialisation
Arnulf Jentzen
Timo Welti
65
17
0
03 Mar 2020
On the Global Convergence of Training Deep Linear ResNets
Difan Zou
Philip M. Long
Quanquan Gu
78
39
0
02 Mar 2020
Loss landscapes and optimization in over-parameterized non-linear systems and neural networks
Chaoyue Liu
Libin Zhu
M. Belkin
ODL
133
266
0
29 Feb 2020
Training BatchNorm and Only BatchNorm: On the Expressive Power of Random Features in CNNs
Jonathan Frankle
D. Schwab
Ari S. Morcos
117
143
0
29 Feb 2020
Train Large, Then Compress: Rethinking Model Size for Efficient Training and Inference of Transformers
Zhuohan Li
Eric Wallace
Sheng Shen
Kevin Lin
Kurt Keutzer
Dan Klein
Joseph E. Gonzalez
138
151
0
26 Feb 2020
Convex Geometry and Duality of Over-parameterized Neural Networks
Tolga Ergen
Mert Pilanci
MLT
138
56
0
25 Feb 2020
Neural Networks are Convex Regularizers: Exact Polynomial-time Convex Optimization Formulations for Two-layer Networks
Mert Pilanci
Tolga Ergen
101
118
0
24 Feb 2020
De-randomized PAC-Bayes Margin Bounds: Applications to Non-convex and Non-smooth Predictors
A. Banerjee
Tiancong Chen
Yingxue Zhou
BDL
86
8
0
23 Feb 2020
An Optimization and Generalization Analysis for Max-Pooling Networks
Alon Brutzkus
Amir Globerson
MLT
AI4CE
46
4
0
22 Feb 2020
Revealing the Structure of Deep Neural Networks via Convex Duality
Tolga Ergen
Mert Pilanci
MLT
102
72
0
22 Feb 2020
Generalisation error in learning with random features and the hidden manifold model
Federica Gerace
Bruno Loureiro
Florent Krzakala
M. Mézard
Lenka Zdeborová
87
172
0
21 Feb 2020
Robust Pruning at Initialization
Soufiane Hayou
Jean-François Ton
Arnaud Doucet
Yee Whye Teh
43
47
0
19 Feb 2020
Global Convergence of Deep Networks with One Wide Layer Followed by Pyramidal Topology
Quynh N. Nguyen
Marco Mondelli
ODL
AI4CE
83
70
0
18 Feb 2020
Learning Parities with Neural Networks
Amit Daniely
Eran Malach
104
78
0
18 Feb 2020
Over-parameterized Adversarial Training: An Analysis Overcoming the Curse of Dimensionality
Yi Zhang
Orestis Plevrakis
S. Du
Xingguo Li
Zhao Song
Sanjeev Arora
127
53
0
16 Feb 2020
Previous
1
2
3
...
13
14
15
16
17
18
Next