ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.13746
22
10

On Incorporating Inductive Biases into VAEs

25 June 2021
Ning Miao
Emile Mathieu
N. Siddharth
Yee Whye Teh
Tom Rainforth
    CML
    DRL
ArXivPDFHTML
Abstract

We explain why directly changing the prior can be a surprisingly ineffective mechanism for incorporating inductive biases into VAEs, and introduce a simple and effective alternative approach: Intermediary Latent Space VAEs(InteL-VAEs). InteL-VAEs use an intermediary set of latent variables to control the stochasticity of the encoding process, before mapping these in turn to the latent representation using a parametric function that encapsulates our desired inductive bias(es). This allows us to impose properties like sparsity or clustering on learned representations, and incorporate human knowledge into the generative model. Whereas changing the prior only indirectly encourages behavior through regularizing the encoder, InteL-VAEs are able to directly enforce desired characteristics. Moreover, they bypass the computation and encoder design issues caused by non-Gaussian priors, while allowing for additional flexibility through training of the parametric mapping function. We show that these advantages, in turn, lead to both better generative models and better representations being learned.

View on arXiv
Comments on this paper