Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1801.02613
Cited By
Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality
8 January 2018
Xingjun Ma
Bo-wen Li
Yisen Wang
S. Erfani
S. Wijewickrema
Grant Schoenebeck
D. Song
Michael E. Houle
James Bailey
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality"
50 / 150 papers shown
Title
Uncovering the Connections Between Adversarial Transferability and Knowledge Transferability
Kaizhao Liang
Jacky Y. Zhang
Wei Ping
Zhuolin Yang
Oluwasanmi Koyejo
Yangqiu Song
AAML
33
25
0
25 Jun 2020
AdvMind: Inferring Adversary Intent of Black-Box Attacks
Ren Pang
Xinyang Zhang
S. Ji
Xiapu Luo
Ting Wang
MLAU
AAML
11
29
0
16 Jun 2020
Tricking Adversarial Attacks To Fail
Blerta Lindqvist
AAML
10
0
0
08 Jun 2020
Exploring the role of Input and Output Layers of a Deep Neural Network in Adversarial Defense
Jay N. Paranjape
R. Dubey
Vijendran V. Gopalan
AAML
19
2
0
02 Jun 2020
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
37
147
0
20 May 2020
DeepRobust: A PyTorch Library for Adversarial Attacks and Defenses
Yaxin Li
Wei Jin
Han Xu
Jiliang Tang
AAML
32
131
0
13 May 2020
Ensemble Generative Cleaning with Feedback Loops for Defending Adversarial Attacks
Jianhe Yuan
Zhihai He
AAML
29
22
0
23 Apr 2020
Single-step Adversarial training with Dropout Scheduling
S. VivekB.
R. Venkatesh Babu
OOD
AAML
18
71
0
18 Apr 2020
DaST: Data-free Substitute Training for Adversarial Attacks
Mingyi Zhou
Jing Wu
Yipeng Liu
Shuaicheng Liu
Ce Zhu
22
142
0
28 Mar 2020
Anomalous Example Detection in Deep Learning: A Survey
Saikiran Bulusu
B. Kailkhura
Bo-wen Li
P. Varshney
D. Song
AAML
28
47
0
16 Mar 2020
Adversarial Camouflage: Hiding Physical-World Attacks with Natural Styles
Ranjie Duan
Xingjun Ma
Yisen Wang
James Bailey
•. A. K. Qin
Yun Yang
AAML
167
224
0
08 Mar 2020
Deflecting Adversarial Attacks
Yao Qin
Nicholas Frosst
Colin Raffel
G. Cottrell
Geoffrey E. Hinton
AAML
30
15
0
18 Feb 2020
Skip Connections Matter: On the Transferability of Adversarial Examples Generated with ResNets
Dongxian Wu
Yisen Wang
Shutao Xia
James Bailey
Xingjun Ma
AAML
SILM
25
310
0
14 Feb 2020
One Man's Trash is Another Man's Treasure: Resisting Adversarial Examples by Adversarial Examples
Chang Xiao
Changxi Zheng
AAML
25
19
0
25 Nov 2019
Deep Verifier Networks: Verification of Deep Discriminative Models with Deep Generative Models
Tong Che
Xiaofeng Liu
Site Li
Yubin Ge
Ruixiang Zhang
Caiming Xiong
Yoshua Bengio
38
52
0
18 Nov 2019
Adversarial Examples in Modern Machine Learning: A Review
R. Wiyatno
Anqi Xu
Ousmane Amadou Dia
A. D. Berker
AAML
18
104
0
13 Nov 2019
Detection of Adversarial Attacks and Characterization of Adversarial Subspace
Mohammad Esmaeilpour
P. Cardinal
Alessandro Lameiras Koerich
AAML
27
17
0
26 Oct 2019
A New Defense Against Adversarial Images: Turning a Weakness into a Strength
Tao Yu
Shengyuan Hu
Chuan Guo
Wei-Lun Chao
Kilian Q. Weinberger
AAML
58
101
0
16 Oct 2019
Toward Robust Image Classification
Basemah Alshemali
Alta Graham
Jugal Kalita
AAML
40
6
0
19 Sep 2019
Denoising and Verification Cross-Layer Ensemble Against Black-box Adversarial Attacks
Ka-Ho Chow
Wenqi Wei
Yanzhao Wu
Ling Liu
AAML
22
15
0
21 Aug 2019
Subspace Determination through Local Intrinsic Dimensional Decomposition: Theory and Experimentation
R. Becker
Imane Hafnaoui
Michael E. Houle
Pan Li
Arthur Zimek
14
8
0
15 Jul 2019
Evolving Robust Neural Architectures to Defend from Adversarial Attacks
Shashank Kotyan
Danilo Vasconcellos Vargas
OOD
AAML
24
36
0
27 Jun 2019
Defending Against Adversarial Examples with K-Nearest Neighbor
Chawin Sitawarin
David Wagner
AAML
8
29
0
23 Jun 2019
ML-LOO: Detecting Adversarial Examples with Feature Attribution
Puyudi Yang
Jianbo Chen
Cho-Jui Hsieh
Jane-ling Wang
Michael I. Jordan
AAML
22
101
0
08 Jun 2019
Enhancing Gradient-based Attacks with Symbolic Intervals
Shiqi Wang
Yizheng Chen
Ahmed Abdou
Suman Jana
AAML
28
15
0
05 Jun 2019
Purifying Adversarial Perturbation with Adversarially Trained Auto-encoders
Hebi Li
Qi Xiao
Shixin Tian
Jin Tian
AAML
24
4
0
26 May 2019
Enhancing Adversarial Defense by k-Winners-Take-All
Chang Xiao
Peilin Zhong
Changxi Zheng
AAML
24
97
0
25 May 2019
Adversarial Training for Free!
Ali Shafahi
Mahyar Najibi
Amin Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
L. Davis
Gavin Taylor
Tom Goldstein
AAML
68
1,227
0
29 Apr 2019
A Kernelized Manifold Mapping to Diminish the Effect of Adversarial Perturbations
Saeid Asgari Taghanaki
Kumar Abhishek
Shekoofeh Azizi
Ghassan Hamarneh
AAML
31
40
0
03 Mar 2019
Enhancing the Robustness of Deep Neural Networks by Boundary Conditional GAN
Ke Sun
Zhanxing Zhu
Zhouchen Lin
AAML
19
20
0
28 Feb 2019
Adversarial Attack and Defense on Point Sets
Jiancheng Yang
Qiang Zhang
Rongyao Fang
Bingbing Ni
Jinxian Liu
Qi Tian
3DPC
24
122
0
28 Feb 2019
Daedalus: Breaking Non-Maximum Suppression in Object Detection via Adversarial Examples
Derui Wang
Chaoran Li
S. Wen
Qing-Long Han
Surya Nepal
Xiangyu Zhang
Yang Xiang
AAML
30
40
0
06 Feb 2019
The Limitations of Adversarial Training and the Blind-Spot Attack
Huan Zhang
Hongge Chen
Zhao Song
Duane S. Boning
Inderjit S. Dhillon
Cho-Jui Hsieh
AAML
19
144
0
15 Jan 2019
Interpretable Deep Learning under Fire
Xinyang Zhang
Ningfei Wang
Hua Shen
S. Ji
Xiapu Luo
Ting Wang
AAML
AI4CE
24
169
0
03 Dec 2018
MixTrain: Scalable Training of Verifiably Robust Neural Networks
Yue Zhang
Yizheng Chen
Ahmed Abdou
Mohsen Guizani
AAML
21
23
0
06 Nov 2018
Characterizing Adversarial Examples Based on Spatial Consistency Information for Semantic Segmentation
Chaowei Xiao
Ruizhi Deng
Bo-wen Li
Feng Yu
M. Liu
D. Song
AAML
16
99
0
11 Oct 2018
On The Utility of Conditional Generation Based Mutual Information for Characterizing Adversarial Subspaces
Chia-Yi Hsu
Pei-Hsuan Lu
Pin-Yu Chen
Chia-Mu Yu
AAML
30
1
0
24 Sep 2018
Distributionally Adversarial Attack
T. Zheng
Changyou Chen
K. Ren
OOD
21
121
0
16 Aug 2018
Motivating the Rules of the Game for Adversarial Example Research
Justin Gilmer
Ryan P. Adams
Ian Goodfellow
David G. Andersen
George E. Dahl
AAML
50
226
0
18 Jul 2018
A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks
Kimin Lee
Kibok Lee
Honglak Lee
Jinwoo Shin
OODD
23
1,997
0
10 Jul 2018
Adversarial Examples in Deep Learning: Characterization and Divergence
Wenqi Wei
Ling Liu
Margaret Loper
Stacey Truex
Lei Yu
Mehmet Emre Gursoy
Yanzhao Wu
AAML
SILM
33
18
0
29 Jun 2018
Dimensionality-Driven Learning with Noisy Labels
Xingjun Ma
Yisen Wang
Michael E. Houle
Shuo Zhou
S. Erfani
Shutao Xia
S. Wijewickrema
James Bailey
NoLa
35
425
0
07 Jun 2018
AttriGuard: A Practical Defense Against Attribute Inference Attacks via Adversarial Machine Learning
Jinyuan Jia
Neil Zhenqiang Gong
AAML
13
161
0
13 May 2018
On the Limitation of Local Intrinsic Dimensionality for Characterizing the Subspaces of Adversarial Examples
Pei-Hsuan Lu
Pin-Yu Chen
Chia-Mu Yu
AAML
9
26
0
26 Mar 2018
Defending against Adversarial Attack towards Deep Neural Networks via Collaborative Multi-task Training
Derui Wang
Chaoran Li
S. Wen
Surya Nepal
Yang Xiang
AAML
38
29
0
14 Mar 2018
High Dimensional Spaces, Deep Learning and Adversarial Examples
S. Dube
37
29
0
02 Jan 2018
Generative Adversarial Perturbations
Omid Poursaeed
Isay Katsman
Bicheng Gao
Serge J. Belongie
AAML
GAN
WIGM
31
351
0
06 Dec 2017
Towards Robust Neural Networks via Random Self-ensemble
Xuanqing Liu
Minhao Cheng
Huan Zhang
Cho-Jui Hsieh
FedML
AAML
43
418
0
02 Dec 2017
DeepFense: Online Accelerated Defense Against Adversarial Deep Learning
B. Rouhani
Mohammad Samragh
Mojan Javaheripi
T. Javidi
F. Koushanfar
AAML
12
15
0
08 Sep 2017
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
293
5,842
0
08 Jul 2016
Previous
1
2
3