ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02282
23
15

Enhancing Gradient-based Attacks with Symbolic Intervals

5 June 2019
Shiqi Wang
Yizheng Chen
Ahmed Abdou
Suman Jana
    AAML
ArXivPDFHTML
Abstract

Recent breakthroughs in defenses against adversarial examples, like adversarial training, make the neural networks robust against various classes of attackers (e.g., first-order gradient-based attacks). However, it is an open question whether the adversarially trained networks are truly robust under unknown attacks. In this paper, we present interval attacks, a new technique to find adversarial examples to evaluate the robustness of neural networks. Interval attacks leverage symbolic interval propagation, a bound propagation technique that can exploit a broader view around the current input to locate promising areas containing adversarial instances, which in turn can be searched with existing gradient-guided attacks. We can obtain such a broader view using sound bound propagation methods to track and over-approximate the errors of the network within given input ranges. Our results show that, on state-of-the-art adversarially trained networks, interval attack can find on average 47% relatively more violations than the state-of-the-art gradient-guided PGD attack.

View on arXiv
Comments on this paper