ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.09525
6
29

Defending Against Adversarial Examples with K-Nearest Neighbor

23 June 2019
Chawin Sitawarin
David Wagner
    AAML
ArXivPDFHTML
Abstract

Robustness is an increasingly important property of machine learning models as they become more and more prevalent. We propose a defense against adversarial examples based on a k-nearest neighbor (kNN) on the intermediate activation of neural networks. Our scheme surpasses state-of-the-art defenses on MNIST and CIFAR-10 against l2-perturbation by a significant margin. With our models, the mean perturbation norm required to fool our MNIST model is 3.07 and 2.30 on CIFAR-10. Additionally, we propose a simple certifiable lower bound on the l2-norm of the adversarial perturbation using a more specific version of our scheme, a 1-NN on representations learned by a Lipschitz network. Our model provides a nontrivial average lower bound of the perturbation norm, comparable to other schemes on MNIST with similar clean accuracy.

View on arXiv
Comments on this paper