Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1801.02613
Cited By
Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality
8 January 2018
Xingjun Ma
Bo-wen Li
Yisen Wang
S. Erfani
S. Wijewickrema
Grant Schoenebeck
D. Song
Michael E. Houle
James Bailey
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality"
50 / 157 papers shown
Title
A Mask-Based Adversarial Defense Scheme
Weizhen Xu
Chenyi Zhang
Fangzhen Zhao
Liangda Fang
AAML
30
3
0
21 Apr 2022
Topology and geometry of data manifold in deep learning
German Magai
A. Ayzenberg
AAML
21
11
0
19 Apr 2022
Adversarial Neon Beam: A Light-based Physical Attack to DNNs
Chen-Hao Hu
Weiwen Shi
Wen Li
AAML
43
8
0
02 Apr 2022
Enhancing Adversarial Training with Second-Order Statistics of Weights
Gao Jin
Xinping Yi
Wei Huang
S. Schewe
Xiaowei Huang
AAML
29
47
0
11 Mar 2022
Poisoning Attacks and Defenses on Artificial Intelligence: A Survey
M. A. Ramírez
Song-Kyoo Kim
H. A. Hamadi
Ernesto Damiani
Young-Ji Byon
Tae-Yeon Kim
C. Cho
C. Yeun
AAML
25
37
0
21 Feb 2022
Adversarially Robust Models may not Transfer Better: Sufficient Conditions for Domain Transferability from the View of Regularization
Xiaojun Xu
Jacky Y. Zhang
Evelyn Ma
Danny Son
Oluwasanmi Koyejo
Bo-wen Li
20
10
0
03 Feb 2022
A Stochastic Bundle Method for Interpolating Networks
Alasdair Paren
Leonard Berrada
Rudra P. K. Poudel
M. P. Kumar
24
4
0
29 Jan 2022
Adversarially Robust Classification by Conditional Generative Model Inversion
Mitra Alirezaei
Tolga Tasdizen
AAML
14
0
0
12 Jan 2022
Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks
Weiran Lin
Keane Lucas
Lujo Bauer
Michael K. Reiter
Mahmood Sharif
AAML
31
5
0
28 Dec 2021
On the Convergence and Robustness of Adversarial Training
Yisen Wang
Xingjun Ma
James Bailey
Jinfeng Yi
Bowen Zhou
Quanquan Gu
AAML
212
345
0
15 Dec 2021
On the Impact of Hard Adversarial Instances on Overfitting in Adversarial Training
Chen Liu
Zhichao Huang
Mathieu Salzmann
Tong Zhang
Sabine Süsstrunk
AAML
23
13
0
14 Dec 2021
Adv-4-Adv: Thwarting Changing Adversarial Perturbations via Adversarial Domain Adaptation
Tianyue Zheng
Zhe Chen
Shuya Ding
Chao Cai
Jun Luo
AAML
35
5
0
01 Dec 2021
Medical Aegis: Robust adversarial protectors for medical images
Qingsong Yao
Zecheng He
S. Kevin Zhou
AAML
MedIm
30
2
0
22 Nov 2021
Detecting AutoAttack Perturbations in the Frequency Domain
P. Lorenz
P. Harder
Dominik Strassel
M. Keuper
J. Keuper
AAML
19
13
0
16 Nov 2021
Robust and Accurate Object Detection via Self-Knowledge Distillation
Weipeng Xu
Pengzhi Chu
Renhao Xie
Xiongziyan Xiao
Hongcheng Huang
AAML
ObjD
27
4
0
14 Nov 2021
ε-weakened Robustness of Deep Neural Networks
Pei Huang
Yuting Yang
Minghao Liu
Fuqi Jia
Feifei Ma
Jian Zhang
AAML
27
18
0
29 Oct 2021
Channel redundancy and overlap in convolutional neural networks with channel-wise NNK graphs
David Bonet
Antonio Ortega
Javier Ruiz-Hidalgo
Sarath Shekkizhar
GNN
33
7
0
18 Oct 2021
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
46
100
0
07 Oct 2021
Improving Adversarial Robustness for Free with Snapshot Ensemble
Yihao Wang
AAML
UQCV
17
1
0
07 Oct 2021
A Uniform Framework for Anomaly Detection in Deep Neural Networks
Fangzhen Zhao
Chenyi Zhang
Naipeng Dong
Zefeng You
Zhenxin Wu
AAML
OOD
OODD
30
9
0
06 Oct 2021
Local Intrinsic Dimensionality Signals Adversarial Perturbations
Sandamal Weerasinghe
T. Alpcan
S. Erfani
C. Leckie
Benjamin I. P. Rubinstein
AAML
23
0
0
24 Sep 2021
Modeling Adversarial Noise for Adversarial Training
Dawei Zhou
Nannan Wang
Bo Han
Tongliang Liu
AAML
38
15
0
21 Sep 2021
Simple Post-Training Robustness Using Test Time Augmentations and Random Forest
Gilad Cohen
Raja Giryes
AAML
40
4
0
16 Sep 2021
TREATED:Towards Universal Defense against Textual Adversarial Attacks
Bin Zhu
Zhaoquan Gu
Le Wang
Zhihong Tian
AAML
36
8
0
13 Sep 2021
Detecting Adversarial Examples Is (Nearly) As Hard As Classifying Them
Florian Tramèr
AAML
30
65
0
24 Jul 2021
On the Certified Robustness for Ensemble Models and Beyond
Zhuolin Yang
Linyi Li
Xiaojun Xu
B. Kailkhura
Tao Xie
Bo-wen Li
AAML
29
48
0
22 Jul 2021
Unsupervised Detection of Adversarial Examples with Model Explanations
Gihyuk Ko
Gyumin Lim
AAML
GAN
33
5
0
22 Jul 2021
Unsupervised Embedding Adaptation via Early-Stage Feature Reconstruction for Few-Shot Classification
Dong Lee
Sae-Young Chung
29
20
0
22 Jun 2021
Taxonomy of Machine Learning Safety: A Survey and Primer
Sina Mohseni
Haotao Wang
Zhiding Yu
Chaowei Xiao
Zhangyang Wang
J. Yadawa
21
31
0
09 Jun 2021
NoiLIn: Improving Adversarial Training and Correcting Stereotype of Noisy Labels
Jingfeng Zhang
Xilie Xu
Bo Han
Tongliang Liu
Gang Niu
Li-zhen Cui
Masashi Sugiyama
NoLa
AAML
23
9
0
31 May 2021
Sparta: Spatially Attentive and Adversarially Robust Activation
Qing Guo
Felix Juefei Xu
Changqing Zhou
Wei Feng
Yang Liu
Song Wang
AAML
33
4
0
18 May 2021
BAARD: Blocking Adversarial Examples by Testing for Applicability, Reliability and Decidability
Luke Chang
Katharina Dost
Kaiqi Zhao
Ambra Demontis
Fabio Roli
Gillian Dobbie
Jörg Simon Wicker
AAML
27
2
0
02 May 2021
Removing Adversarial Noise in Class Activation Feature Space
Dawei Zhou
N. Wang
Chunlei Peng
Xinbo Gao
Xiaoyu Wang
Jun Yu
Tongliang Liu
AAML
30
28
0
19 Apr 2021
Relating Adversarially Robust Generalization to Flat Minima
David Stutz
Matthias Hein
Bernt Schiele
OOD
36
65
0
09 Apr 2021
LiBRe: A Practical Bayesian Approach to Adversarial Detection
Zhijie Deng
Xiao Yang
Shizhen Xu
Hang Su
Jun Zhu
BDL
AAML
20
61
0
27 Mar 2021
A Unified Game-Theoretic Interpretation of Adversarial Robustness
Jie Ren
Die Zhang
Yisen Wang
Lu Chen
Zhanpeng Zhou
...
Xu Cheng
Xin Wang
Meng Zhou
Jie Shi
Quanshi Zhang
AAML
72
22
0
12 Mar 2021
Consistency Regularization for Adversarial Robustness
Jihoon Tack
Sihyun Yu
Jongheon Jeong
Minseon Kim
Sung Ju Hwang
Jinwoo Shin
AAML
41
57
0
08 Mar 2021
SpectralDefense: Detecting Adversarial Attacks on CNNs in the Fourier Domain
P. Harder
Franz-Josef Pfreundt
M. Keuper
J. Keuper
AAML
27
48
0
04 Mar 2021
Understanding Robustness in Teacher-Student Setting: A New Perspective
Zhuolin Yang
Zhaoxi Chen
Tiffany Cai
Xinyun Chen
Bo-wen Li
Yuandong Tian
AAML
35
2
0
25 Feb 2021
Unlearnable Examples: Making Personal Data Unexploitable
Hanxun Huang
Xingjun Ma
S. Erfani
James Bailey
Yisen Wang
MIACV
156
190
0
13 Jan 2021
A Deep Marginal-Contrastive Defense against Adversarial Attacks on 1D Models
Mohammed Hassanin
Nour Moustafa
M. Tahtali
AAML
24
2
0
08 Dec 2020
Feature Space Singularity for Out-of-Distribution Detection
Haiwen Huang
Zhihan Li
Lulu Wang
Sishuo Chen
Bin Dong
Xinyu Zhou
OODD
22
65
0
30 Nov 2020
A Sweet Rabbit Hole by DARCY: Using Honeypots to Detect Universal Trigger's Adversarial Attacks
Thai Le
Noseong Park
Dongwon Lee
10
23
0
20 Nov 2020
Almost Tight L0-norm Certified Robustness of Top-k Predictions against Adversarial Perturbations
Jinyuan Jia
Binghui Wang
Xiaoyu Cao
Hongbin Liu
Neil Zhenqiang Gong
16
24
0
15 Nov 2020
The Vulnerability of the Neural Networks Against Adversarial Examples in Deep Learning Algorithms
Rui Zhao
AAML
34
1
0
02 Nov 2020
A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack and Learning
Hongjun Wang
Guanbin Li
Xiaobai Liu
Liang Lin
GAN
AAML
21
22
0
15 Oct 2020
A Unified Approach to Interpreting and Boosting Adversarial Transferability
Xin Wang
Jie Ren
Shuyu Lin
Xiangming Zhu
Yisen Wang
Quanshi Zhang
AAML
29
94
0
08 Oct 2020
Neural Bootstrapper
Minsuk Shin
Hyungjoon Cho
Hyun-Seok Min
Sungbin Lim
UQCV
BDL
22
7
0
02 Oct 2020
Adversarial Machine Learning in Image Classification: A Survey Towards the Defender's Perspective
G. R. Machado
Eugênio Silva
R. Goldschmidt
AAML
33
157
0
08 Sep 2020
Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp Adversarial Attacks
Wei-An Lin
Chun Pong Lau
Alexander Levine
Ramalingam Chellappa
S. Feizi
AAML
81
60
0
05 Sep 2020
Previous
1
2
3
4
Next