13
5

On the effect of the activation function on the distribution of hidden nodes in a deep network

Abstract

We analyze the joint probability distribution on the lengths of the vectors of hidden variables in different layers of a fully connected deep network, when the weights and biases are chosen randomly according to Gaussian distributions, and the input is in {1,1}N\{ -1, 1\}^N. We show that, if the activation function ϕ\phi satisfies a minimal set of assumptions, satisfied by all activation functions that we know that are used in practice, then, as the width of the network gets large, the `length process' converges in probability to a length map that is determined as a simple function of the variances of the random weights and biases, and the activation function ϕ\phi. We also show that this convergence may fail for ϕ\phi that violate our assumptions.

View on arXiv
Comments on this paper