Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.00123
Cited By
Backpropagation through the Void: Optimizing control variates for black-box gradient estimation
31 October 2017
Will Grathwohl
Dami Choi
Yuhuai Wu
Geoffrey Roeder
David Duvenaud
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Backpropagation through the Void: Optimizing control variates for black-box gradient estimation"
50 / 204 papers shown
Title
Efficient Marginalization of Discrete and Structured Latent Variables via Sparsity
Gonçalo M. Correia
Vlad Niculae
Wilker Aziz
André F. T. Martins
BDL
30
22
0
03 Jul 2020
Semi-supervised Sequential Generative Models
Michael Teng
T. Le
Adam Scibior
Frank Wood
BDL
AI4TS
25
3
0
30 Jun 2020
Lattice Representation Learning
Luis Lastras
19
1
0
24 Jun 2020
DisARM: An Antithetic Gradient Estimator for Binary Latent Variables
Zhe Dong
A. Mnih
George Tucker
DRL
16
32
0
18 Jun 2020
GO Hessian for Expectation-Based Objectives
Yulai Cong
Miaoyun Zhao
Jianqiao Li
Junya Chen
Lawrence Carin
17
0
0
16 Jun 2020
Generative Semantic Hashing Enhanced via Boltzmann Machines
Lin Zheng
Qinliang Su
Dinghan Shen
Changyou Chen
12
6
0
16 Jun 2020
Gradient Estimation with Stochastic Softmax Tricks
Max B. Paulus
Dami Choi
Daniel Tarlow
Andreas Krause
Chris J. Maddison
BDL
36
85
0
15 Jun 2020
Scalable Control Variates for Monte Carlo Methods via Stochastic Optimization
Shijing Si
Chris J. Oates
Andrew B. Duncan
Lawrence Carin
F. Briol
BDL
23
21
0
12 Jun 2020
Reintroducing Straight-Through Estimators as Principled Methods for Stochastic Binary Networks
Alexander Shekhovtsov
Dmitry Molchanov
MQ
17
15
0
11 Jun 2020
Latent Transformations for Discrete-Data Normalising Flows
Rob D. Hesselink
Wilker Aziz
DRL
21
1
0
11 Jun 2020
Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks
Alexander Shekhovtsov
V. Yanush
B. Flach
MQ
37
10
0
04 Jun 2020
Neural Control Variates
Thomas Müller
Fabrice Rousselle
Jan Novák
A. Keller
BDL
10
54
0
02 Jun 2020
Joint Stochastic Approximation and Its Application to Learning Discrete Latent Variable Models
Zhijian Ou
Yunfu Song
BDL
32
8
0
28 May 2020
In search of isoglosses: continuous and discrete language embeddings in Slavic historical phonology
C. Cathcart
Florian Wandl
6
6
0
27 May 2020
Deep Learning for Wireless Communications
T. Erpek
Tim O'Shea
Y. Sagduyu
Yi Shi
T. Clancy
34
134
0
12 May 2020
Neural Conditional Event Time Models
Matthew M. Engelhard
S. Berchuck
Joshua DÁrcy
Ricardo Henao
16
3
0
03 Apr 2020
Amortized variance reduction for doubly stochastic objectives
Ayman Boustati
Sattar Vakili
J. Hensman
S. T. John
26
5
0
09 Mar 2020
DADA: Differentiable Automatic Data Augmentation
Yonggang Li
Guosheng Hu
Yongtao Wang
Timothy M. Hospedales
N. Robertson
Yongxin Yang
18
107
0
08 Mar 2020
Generalized Gumbel-Softmax Gradient Estimator for Generic Discrete Random Variables
Weonyoung Joo
Dongjun Kim
Seung-Jae Shin
Il-Chul Moon
21
1
0
04 Mar 2020
Estimating Gradients for Discrete Random Variables by Sampling without Replacement
W. Kool
H. V. Hoof
Max Welling
BDL
31
49
0
14 Feb 2020
Learnable Bernoulli Dropout for Bayesian Deep Learning
Shahin Boluki
Randy Ardywibowo
Siamak Zamani Dadaneh
Mingyuan Zhou
Xiaoning Qian
BDL
12
34
0
12 Feb 2020
Black-Box Optimization with Local Generative Surrogates
S. Shirobokov
V. Belavin
Michael Kagan
Andrey Ustyuzhanin
A. G. Baydin
8
3
0
11 Feb 2020
Discrete Action On-Policy Learning with Action-Value Critic
Yuguang Yue
Yunhao Tang
Mingzhang Yin
Mingyuan Yin
OffRL
6
5
0
10 Feb 2020
Adaptive Correlated Monte Carlo for Contextual Categorical Sequence Generation
Xinjie Fan
Yizhe Zhang
Zhendong Wang
Mingyuan Zhou
BDL
9
4
0
31 Dec 2019
Hierarchical Variational Imitation Learning of Control Programs
Roy Fox
Richard Shin
William Paul
Yitian Zou
D. Song
Ken Goldberg
Pieter Abbeel
Ion Stoica
BDL
8
4
0
29 Dec 2019
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Andres Potapczynski
G. Loaiza-Ganem
John P. Cunningham
32
29
0
19 Dec 2019
UNAS: Differentiable Architecture Search Meets Reinforcement Learning
Arash Vahdat
Arun Mallya
Ming Liu
Jan Kautz
30
33
0
16 Dec 2019
Learning with Multiplicative Perturbations
Xiulong Yang
Shihao Ji
AAML
30
4
0
04 Dec 2019
Low-variance Black-box Gradient Estimates for the Plackett-Luce Distribution
Artyom Gadetsky
Kirill Struminsky
Christopher Robinson
Novi Quadrianto
Dmitry Vetrov
8
11
0
22 Nov 2019
A Rule for Gradient Estimator Selection, with an Application to Variational Inference
Tomas Geffner
Justin Domke
48
6
0
05 Nov 2019
Amortized Population Gibbs Samplers with Neural Sufficient Statistics
Hao Wu
Heiko Zimmermann
Eli Sennesh
T. Le
Jan-Willem van de Meent
25
7
0
04 Nov 2019
ARSM Gradient Estimator for Supervised Learning to Rank
Siamak Zamani Dadaneh
Shahin Boluki
Mingyuan Zhou
Xiaoning Qian
25
7
0
01 Nov 2019
From Importance Sampling to Doubly Robust Policy Gradient
Jiawei Huang
Nan Jiang
OffRL
27
24
0
20 Oct 2019
A unified view of likelihood ratio and reparameterization gradients and an optimal importance sampling scheme
Paavo Parmas
Masashi Sugiyama
14
3
0
14 Oct 2019
Straight-Through Estimator as Projected Wasserstein Gradient Flow
Pengyu Cheng
YooJung Choi
Yitao Liang
Dinghan Shen
Ricardo Henao
Mathias Niepert
24
14
0
05 Oct 2019
Intensity-Free Learning of Temporal Point Processes
Oleksandr Shchur
Marin Bilos
Stephan Günnemann
AI4TS
27
167
0
26 Sep 2019
Select and Attend: Towards Controllable Content Selection in Text Generation
Xiaoyu Shen
Jun Suzuki
Kentaro Inui
Hui Su
Dietrich Klakow
Satoshi Sekine
29
28
0
10 Sep 2019
Neural Image Compression and Explanation
Xiang Li
Shihao Ji
10
10
0
09 Aug 2019
Probabilistic Models with Deep Neural Networks
A. Masegosa
Rafael Cabañas
H. Langseth
Thomas D. Nielsen
Antonio Salmerón
BDL
14
12
0
09 Aug 2019
Trajectory-wise Control Variates for Variance Reduction in Policy Gradient Methods
Ching-An Cheng
Xinyan Yan
Byron Boots
22
22
0
08 Aug 2019
Cooperative image captioning
Gilad Vered
Gal Oren
Y. Atzmon
Gal Chechik
31
2
0
26 Jul 2019
The Thermodynamic Variational Objective
Vaden Masrani
T. Le
Frank Wood
19
48
0
28 Jun 2019
Policy Optimization with Stochastic Mirror Descent
Long Yang
Yu Zhang
Gang Zheng
Qian Zheng
Pengfei Li
Jianhang Huang
Jun Wen
Gang Pan
31
34
0
25 Jun 2019
Amortized Bethe Free Energy Minimization for Learning MRFs
Sam Wiseman
Yoon Kim
TPM
DRL
13
11
0
14 Jun 2019
Reinforcement Learning When All Actions are Not Always Available
Yash Chandak
Georgios Theocharous
Blossom Metevier
Philip S. Thomas
13
7
0
05 Jun 2019
Generalizable Adversarial Attacks with Latent Variable Perturbation Modelling
A. Bose
Andre Cianflone
William L. Hamilton
OOD
AAML
19
7
0
26 May 2019
Survival Function Matching for Calibrated Time-to-Event Predictions
Paidamoyo Chapfuwa
Chenyang Tao
Lawrence Carin
Ricardo Henao
OOD
11
4
0
21 May 2019
Improving Discrete Latent Representations With Differentiable Approximation Bridges
Jason Ramapuram
Russ Webb
DRL
19
9
0
09 May 2019
Smoothing Policies and Safe Policy Gradients
Matteo Papini
Matteo Pirotta
Marcello Restelli
24
29
0
08 May 2019
ARSM: Augment-REINFORCE-Swap-Merge Estimator for Gradient Backpropagation Through Categorical Variables
Mingzhang Yin
Yuguang Yue
Mingyuan Zhou
14
23
0
04 May 2019
Previous
1
2
3
4
5
Next