ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.00123
  4. Cited By
Backpropagation through the Void: Optimizing control variates for
  black-box gradient estimation

Backpropagation through the Void: Optimizing control variates for black-box gradient estimation

31 October 2017
Will Grathwohl
Dami Choi
Yuhuai Wu
Geoffrey Roeder
David Duvenaud
ArXivPDFHTML

Papers citing "Backpropagation through the Void: Optimizing control variates for black-box gradient estimation"

50 / 204 papers shown
Title
Efficient Marginalization of Discrete and Structured Latent Variables
  via Sparsity
Efficient Marginalization of Discrete and Structured Latent Variables via Sparsity
Gonçalo M. Correia
Vlad Niculae
Wilker Aziz
André F. T. Martins
BDL
30
22
0
03 Jul 2020
Semi-supervised Sequential Generative Models
Semi-supervised Sequential Generative Models
Michael Teng
T. Le
Adam Scibior
Frank Wood
BDL
AI4TS
25
3
0
30 Jun 2020
Lattice Representation Learning
Lattice Representation Learning
Luis Lastras
19
1
0
24 Jun 2020
DisARM: An Antithetic Gradient Estimator for Binary Latent Variables
DisARM: An Antithetic Gradient Estimator for Binary Latent Variables
Zhe Dong
A. Mnih
George Tucker
DRL
16
32
0
18 Jun 2020
GO Hessian for Expectation-Based Objectives
GO Hessian for Expectation-Based Objectives
Yulai Cong
Miaoyun Zhao
Jianqiao Li
Junya Chen
Lawrence Carin
17
0
0
16 Jun 2020
Generative Semantic Hashing Enhanced via Boltzmann Machines
Generative Semantic Hashing Enhanced via Boltzmann Machines
Lin Zheng
Qinliang Su
Dinghan Shen
Changyou Chen
12
6
0
16 Jun 2020
Gradient Estimation with Stochastic Softmax Tricks
Gradient Estimation with Stochastic Softmax Tricks
Max B. Paulus
Dami Choi
Daniel Tarlow
Andreas Krause
Chris J. Maddison
BDL
36
85
0
15 Jun 2020
Scalable Control Variates for Monte Carlo Methods via Stochastic
  Optimization
Scalable Control Variates for Monte Carlo Methods via Stochastic Optimization
Shijing Si
Chris J. Oates
Andrew B. Duncan
Lawrence Carin
F. Briol
BDL
23
21
0
12 Jun 2020
Reintroducing Straight-Through Estimators as Principled Methods for
  Stochastic Binary Networks
Reintroducing Straight-Through Estimators as Principled Methods for Stochastic Binary Networks
Alexander Shekhovtsov
Dmitry Molchanov
MQ
17
15
0
11 Jun 2020
Latent Transformations for Discrete-Data Normalising Flows
Latent Transformations for Discrete-Data Normalising Flows
Rob D. Hesselink
Wilker Aziz
DRL
21
1
0
11 Jun 2020
Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks
Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks
Alexander Shekhovtsov
V. Yanush
B. Flach
MQ
37
10
0
04 Jun 2020
Neural Control Variates
Neural Control Variates
Thomas Müller
Fabrice Rousselle
Jan Novák
A. Keller
BDL
10
54
0
02 Jun 2020
Joint Stochastic Approximation and Its Application to Learning Discrete
  Latent Variable Models
Joint Stochastic Approximation and Its Application to Learning Discrete Latent Variable Models
Zhijian Ou
Yunfu Song
BDL
32
8
0
28 May 2020
In search of isoglosses: continuous and discrete language embeddings in
  Slavic historical phonology
In search of isoglosses: continuous and discrete language embeddings in Slavic historical phonology
C. Cathcart
Florian Wandl
6
6
0
27 May 2020
Deep Learning for Wireless Communications
Deep Learning for Wireless Communications
T. Erpek
Tim O'Shea
Y. Sagduyu
Yi Shi
T. Clancy
34
134
0
12 May 2020
Neural Conditional Event Time Models
Neural Conditional Event Time Models
Matthew M. Engelhard
S. Berchuck
Joshua DÁrcy
Ricardo Henao
16
3
0
03 Apr 2020
Amortized variance reduction for doubly stochastic objectives
Amortized variance reduction for doubly stochastic objectives
Ayman Boustati
Sattar Vakili
J. Hensman
S. T. John
26
5
0
09 Mar 2020
DADA: Differentiable Automatic Data Augmentation
DADA: Differentiable Automatic Data Augmentation
Yonggang Li
Guosheng Hu
Yongtao Wang
Timothy M. Hospedales
N. Robertson
Yongxin Yang
18
107
0
08 Mar 2020
Generalized Gumbel-Softmax Gradient Estimator for Generic Discrete
  Random Variables
Generalized Gumbel-Softmax Gradient Estimator for Generic Discrete Random Variables
Weonyoung Joo
Dongjun Kim
Seung-Jae Shin
Il-Chul Moon
21
1
0
04 Mar 2020
Estimating Gradients for Discrete Random Variables by Sampling without
  Replacement
Estimating Gradients for Discrete Random Variables by Sampling without Replacement
W. Kool
H. V. Hoof
Max Welling
BDL
31
49
0
14 Feb 2020
Learnable Bernoulli Dropout for Bayesian Deep Learning
Learnable Bernoulli Dropout for Bayesian Deep Learning
Shahin Boluki
Randy Ardywibowo
Siamak Zamani Dadaneh
Mingyuan Zhou
Xiaoning Qian
BDL
12
34
0
12 Feb 2020
Black-Box Optimization with Local Generative Surrogates
Black-Box Optimization with Local Generative Surrogates
S. Shirobokov
V. Belavin
Michael Kagan
Andrey Ustyuzhanin
A. G. Baydin
8
3
0
11 Feb 2020
Discrete Action On-Policy Learning with Action-Value Critic
Discrete Action On-Policy Learning with Action-Value Critic
Yuguang Yue
Yunhao Tang
Mingzhang Yin
Mingyuan Yin
OffRL
6
5
0
10 Feb 2020
Adaptive Correlated Monte Carlo for Contextual Categorical Sequence
  Generation
Adaptive Correlated Monte Carlo for Contextual Categorical Sequence Generation
Xinjie Fan
Yizhe Zhang
Zhendong Wang
Mingyuan Zhou
BDL
9
4
0
31 Dec 2019
Hierarchical Variational Imitation Learning of Control Programs
Hierarchical Variational Imitation Learning of Control Programs
Roy Fox
Richard Shin
William Paul
Yitian Zou
D. Song
Ken Goldberg
Pieter Abbeel
Ion Stoica
BDL
8
4
0
29 Dec 2019
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Andres Potapczynski
G. Loaiza-Ganem
John P. Cunningham
32
29
0
19 Dec 2019
UNAS: Differentiable Architecture Search Meets Reinforcement Learning
UNAS: Differentiable Architecture Search Meets Reinforcement Learning
Arash Vahdat
Arun Mallya
Ming Liu
Jan Kautz
30
33
0
16 Dec 2019
Learning with Multiplicative Perturbations
Learning with Multiplicative Perturbations
Xiulong Yang
Shihao Ji
AAML
30
4
0
04 Dec 2019
Low-variance Black-box Gradient Estimates for the Plackett-Luce
  Distribution
Low-variance Black-box Gradient Estimates for the Plackett-Luce Distribution
Artyom Gadetsky
Kirill Struminsky
Christopher Robinson
Novi Quadrianto
Dmitry Vetrov
8
11
0
22 Nov 2019
A Rule for Gradient Estimator Selection, with an Application to
  Variational Inference
A Rule for Gradient Estimator Selection, with an Application to Variational Inference
Tomas Geffner
Justin Domke
48
6
0
05 Nov 2019
Amortized Population Gibbs Samplers with Neural Sufficient Statistics
Amortized Population Gibbs Samplers with Neural Sufficient Statistics
Hao Wu
Heiko Zimmermann
Eli Sennesh
T. Le
Jan-Willem van de Meent
25
7
0
04 Nov 2019
ARSM Gradient Estimator for Supervised Learning to Rank
ARSM Gradient Estimator for Supervised Learning to Rank
Siamak Zamani Dadaneh
Shahin Boluki
Mingyuan Zhou
Xiaoning Qian
25
7
0
01 Nov 2019
From Importance Sampling to Doubly Robust Policy Gradient
From Importance Sampling to Doubly Robust Policy Gradient
Jiawei Huang
Nan Jiang
OffRL
27
24
0
20 Oct 2019
A unified view of likelihood ratio and reparameterization gradients and
  an optimal importance sampling scheme
A unified view of likelihood ratio and reparameterization gradients and an optimal importance sampling scheme
Paavo Parmas
Masashi Sugiyama
14
3
0
14 Oct 2019
Straight-Through Estimator as Projected Wasserstein Gradient Flow
Straight-Through Estimator as Projected Wasserstein Gradient Flow
Pengyu Cheng
YooJung Choi
Yitao Liang
Dinghan Shen
Ricardo Henao
Mathias Niepert
24
14
0
05 Oct 2019
Intensity-Free Learning of Temporal Point Processes
Intensity-Free Learning of Temporal Point Processes
Oleksandr Shchur
Marin Bilos
Stephan Günnemann
AI4TS
27
167
0
26 Sep 2019
Select and Attend: Towards Controllable Content Selection in Text
  Generation
Select and Attend: Towards Controllable Content Selection in Text Generation
Xiaoyu Shen
Jun Suzuki
Kentaro Inui
Hui Su
Dietrich Klakow
Satoshi Sekine
29
28
0
10 Sep 2019
Neural Image Compression and Explanation
Neural Image Compression and Explanation
Xiang Li
Shihao Ji
10
10
0
09 Aug 2019
Probabilistic Models with Deep Neural Networks
Probabilistic Models with Deep Neural Networks
A. Masegosa
Rafael Cabañas
H. Langseth
Thomas D. Nielsen
Antonio Salmerón
BDL
14
12
0
09 Aug 2019
Trajectory-wise Control Variates for Variance Reduction in Policy
  Gradient Methods
Trajectory-wise Control Variates for Variance Reduction in Policy Gradient Methods
Ching-An Cheng
Xinyan Yan
Byron Boots
22
22
0
08 Aug 2019
Cooperative image captioning
Cooperative image captioning
Gilad Vered
Gal Oren
Y. Atzmon
Gal Chechik
31
2
0
26 Jul 2019
The Thermodynamic Variational Objective
The Thermodynamic Variational Objective
Vaden Masrani
T. Le
Frank Wood
19
48
0
28 Jun 2019
Policy Optimization with Stochastic Mirror Descent
Policy Optimization with Stochastic Mirror Descent
Long Yang
Yu Zhang
Gang Zheng
Qian Zheng
Pengfei Li
Jianhang Huang
Jun Wen
Gang Pan
31
34
0
25 Jun 2019
Amortized Bethe Free Energy Minimization for Learning MRFs
Amortized Bethe Free Energy Minimization for Learning MRFs
Sam Wiseman
Yoon Kim
TPM
DRL
13
11
0
14 Jun 2019
Reinforcement Learning When All Actions are Not Always Available
Reinforcement Learning When All Actions are Not Always Available
Yash Chandak
Georgios Theocharous
Blossom Metevier
Philip S. Thomas
13
7
0
05 Jun 2019
Generalizable Adversarial Attacks with Latent Variable Perturbation
  Modelling
Generalizable Adversarial Attacks with Latent Variable Perturbation Modelling
A. Bose
Andre Cianflone
William L. Hamilton
OOD
AAML
19
7
0
26 May 2019
Survival Function Matching for Calibrated Time-to-Event Predictions
Survival Function Matching for Calibrated Time-to-Event Predictions
Paidamoyo Chapfuwa
Chenyang Tao
Lawrence Carin
Ricardo Henao
OOD
11
4
0
21 May 2019
Improving Discrete Latent Representations With Differentiable
  Approximation Bridges
Improving Discrete Latent Representations With Differentiable Approximation Bridges
Jason Ramapuram
Russ Webb
DRL
19
9
0
09 May 2019
Smoothing Policies and Safe Policy Gradients
Smoothing Policies and Safe Policy Gradients
Matteo Papini
Matteo Pirotta
Marcello Restelli
24
29
0
08 May 2019
ARSM: Augment-REINFORCE-Swap-Merge Estimator for Gradient
  Backpropagation Through Categorical Variables
ARSM: Augment-REINFORCE-Swap-Merge Estimator for Gradient Backpropagation Through Categorical Variables
Mingzhang Yin
Yuguang Yue
Mingyuan Zhou
14
23
0
04 May 2019
Previous
12345
Next