ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.00123
  4. Cited By
Backpropagation through the Void: Optimizing control variates for
  black-box gradient estimation

Backpropagation through the Void: Optimizing control variates for black-box gradient estimation

31 October 2017
Will Grathwohl
Dami Choi
Yuhuai Wu
Geoffrey Roeder
David Duvenaud
ArXivPDFHTML

Papers citing "Backpropagation through the Void: Optimizing control variates for black-box gradient estimation"

50 / 204 papers shown
Title
An Introduction to Discrete Variational Autoencoders
An Introduction to Discrete Variational Autoencoders
Alan Jeffares
Liyuan Liu
DRL
BDL
CML
41
0
0
15 May 2025
Training neural control variates using correlated configurations
Training neural control variates using correlated configurations
Hyunwoo Oh
BDL
46
0
0
12 May 2025
Ideas in Inference-time Scaling can Benefit Generative Pre-training Algorithms
Jiaming Song
Linqi Zhou
DiffM
71
0
0
10 Mar 2025
Multi-Fidelity Policy Gradient Algorithms
Multi-Fidelity Policy Gradient Algorithms
Xinjie Liu
Cyrus Neary
Kushagra Gupta
Christian Ellis
Ufuk Topcu
David Fridovich-Keil
OffRL
191
0
0
07 Mar 2025
Imperative Learning: A Self-supervised Neuro-Symbolic Learning Framework for Robot Autonomy
Imperative Learning: A Self-supervised Neuro-Symbolic Learning Framework for Robot Autonomy
Chen Wang
Kaiyi Ji
Junyi Geng
Zhongqiang Ren
Taimeng Fu
...
Yi Du
Qihang Li
Yuqing Yang
Xiao Lin
Zhipeng Zhao
SSL
89
9
0
28 Jan 2025
Adaptive Feedforward Gradient Estimation in Neural ODEs
Adaptive Feedforward Gradient Estimation in Neural ODEs
Jaouad Dabounou
18
1
0
22 Sep 2024
Variance reduction of diffusion model's gradients with Taylor
  approximation-based control variate
Variance reduction of diffusion model's gradients with Taylor approximation-based control variate
Paul Jeha
Will Grathwohl
Michael Riis Andersen
Carl Henrik Ek
J. Frellsen
DiffM
35
1
0
22 Aug 2024
How to Choose a Reinforcement-Learning Algorithm
How to Choose a Reinforcement-Learning Algorithm
Fabian Bongratz
Vladimir Golkov
Lukas Mautner
Luca Della Libera
Frederik Heetmeyer
Felix Czaja
Julian Rodemann
Daniel Cremers
34
1
0
30 Jul 2024
DMTG: One-Shot Differentiable Multi-Task Grouping
DMTG: One-Shot Differentiable Multi-Task Grouping
Yuan Gao
Shuguo Jiang
Moran Li
Jin-Gang Yu
Gui-Song Xia
54
2
0
06 Jul 2024
Simulating, Fast and Slow: Learning Policies for Black-Box Optimization
Simulating, Fast and Slow: Learning Policies for Black-Box Optimization
F. V. Massoli
Tim Bakker
Thomas M. Hehn
Tribhuvanesh Orekondy
Arash Behboodi
55
0
0
06 Jun 2024
A Constraint-Enforcing Reward for Adversarial Attacks on Text
  Classifiers
A Constraint-Enforcing Reward for Adversarial Attacks on Text Classifiers
Tom Roth
Inigo Jauregi Unanue
A. Abuadbba
Massimo Piccardi
AAML
SILM
26
1
0
20 May 2024
Accelerating Legacy Numerical Solvers by Non-intrusive Gradient-based
  Meta-solving
Accelerating Legacy Numerical Solvers by Non-intrusive Gradient-based Meta-solving
S. Arisaka
Qianxiao Li
27
0
0
05 May 2024
Off-OAB: Off-Policy Policy Gradient Method with Optimal Action-Dependent
  Baseline
Off-OAB: Off-Policy Policy Gradient Method with Optimal Action-Dependent Baseline
Wenjia Meng
Qian Zheng
Long Yang
Yilong Yin
Gang Pan
OffRL
34
0
0
04 May 2024
iMTSP: Solving Min-Max Multiple Traveling Salesman Problem with
  Imperative Learning
iMTSP: Solving Min-Max Multiple Traveling Salesman Problem with Imperative Learning
Yifan Guo
Zhongqiang Ren
Chen Wang
16
3
0
01 May 2024
Data augmentation with automated machine learning: approaches and performance comparison with classical data augmentation methods
Data augmentation with automated machine learning: approaches and performance comparison with classical data augmentation methods
A. Mumuni
F. Mumuni
70
5
0
13 Mar 2024
Black-Box Access is Insufficient for Rigorous AI Audits
Black-Box Access is Insufficient for Rigorous AI Audits
Stephen Casper
Carson Ezell
Charlotte Siegmann
Noam Kolt
Taylor Lynn Curtis
...
Michael Gerovitch
David Bau
Max Tegmark
David M. Krueger
Dylan Hadfield-Menell
AAML
34
78
0
25 Jan 2024
Differentiable Sampling of Categorical Distributions Using the
  CatLog-Derivative Trick
Differentiable Sampling of Categorical Distributions Using the CatLog-Derivative Trick
Lennert De Smet
Emanuele Sansone
Pedro Zuidberg Dos Martires
22
11
0
21 Nov 2023
Sparse Backpropagation for MoE Training
Sparse Backpropagation for MoE Training
Liyuan Liu
Jianfeng Gao
Weizhu Chen
MoE
27
9
0
01 Oct 2023
Deep Video Codec Control for Vision Models
Deep Video Codec Control for Vision Models
Christoph Reich
Biplob K. Debnath
Deep Patel
Tim Prangemeier
Daniel Cremers
S. Chakradhar
26
1
0
30 Aug 2023
Fast Slate Policy Optimization: Going Beyond Plackett-Luce
Fast Slate Policy Optimization: Going Beyond Plackett-Luce
Otmane Sakhi
D. Rohde
Nicolas Chopin
OffRL
27
3
0
03 Aug 2023
Efficient Learning of Discrete-Continuous Computation Graphs
Efficient Learning of Discrete-Continuous Computation Graphs
David Friede
Mathias Niepert
13
3
0
26 Jul 2023
Learning Disentangled Discrete Representations
Learning Disentangled Discrete Representations
David Friede
Christian Reimers
Heiner Stuckenschmidt
Mathias Niepert
CoGe
OCL
OOD
DRL
26
0
0
26 Jul 2023
Variational Prediction
Variational Prediction
Alexander A. Alemi
Ben Poole
BDL
14
2
0
14 Jul 2023
GeoPhy: Differentiable Phylogenetic Inference via Geometric Gradients of
  Tree Topologies
GeoPhy: Differentiable Phylogenetic Inference via Geometric Gradients of Tree Topologies
Takahiro Mimori
Michiaki Hamada
26
10
0
07 Jul 2023
SLACK: Stable Learning of Augmentations with Cold-start and KL
  regularization
SLACK: Stable Learning of Augmentations with Cold-start and KL regularization
Juliette Marrie
Michael Arbel
Diane Larlus
Julien Mairal
OffRL
41
4
0
16 Jun 2023
Soft Merging of Experts with Adaptive Routing
Soft Merging of Experts with Adaptive Routing
Mohammed Muqeeth
Haokun Liu
Colin Raffel
MoMe
MoE
37
45
0
06 Jun 2023
Auto-CARD: Efficient and Robust Codec Avatar Driving for Real-time Mobile Telepresence
Auto-CARD: Efficient and Robust Codec Avatar Driving for Real-time Mobile Telepresence
Y. Fu
Yuecheng Li
Chenghui Li
Jason M. Saragih
Peizhao Zhang
Xiaoliang Dai
Yingyan Lin
3DH
46
2
0
24 Apr 2023
Bridging Discrete and Backpropagation: Straight-Through and Beyond
Bridging Discrete and Backpropagation: Straight-Through and Beyond
Liyuan Liu
Chengyu Dong
Xiaodong Liu
Bin-Xia Yu
Jianfeng Gao
BDL
23
20
0
17 Apr 2023
Anomaly Detection in Aeronautics Data with Quantum-compatible Discrete
  Deep Generative Model
Anomaly Detection in Aeronautics Data with Quantum-compatible Discrete Deep Generative Model
T. Templin
Milad Memarzadeh
W. Vinci
P. A. Lott
A. A. Asanjan
Anthony Alexiades Armenakas
E. Rieffel
DRL
24
5
0
22 Mar 2023
Meta-learning Control Variates: Variance Reduction with Limited Data
Meta-learning Control Variates: Variance Reduction with Limited Data
Z. Sun
Chris J. Oates
F. Briol
BDL
49
9
0
08 Mar 2023
Neural Probabilistic Logic Programming in Discrete-Continuous Domains
Neural Probabilistic Logic Programming in Discrete-Continuous Domains
Lennert De Smet
Pedro Zuidberg Dos Martires
Robin Manhaeve
G. Marra
Angelika Kimmig
Luc de Raedt
NAI
19
20
0
08 Mar 2023
Implicit Bilevel Optimization: Differentiating through Bilevel
  Optimization Programming
Implicit Bilevel Optimization: Differentiating through Bilevel Optimization Programming
Francesco Alesiani
19
4
0
28 Feb 2023
Efficient Attention via Control Variates
Efficient Attention via Control Variates
Lin Zheng
Jianbo Yuan
Chong-Jun Wang
Lingpeng Kong
34
18
0
09 Feb 2023
Distillation Policy Optimization
Distillation Policy Optimization
Jianfei Ma
OffRL
26
1
0
01 Feb 2023
Learning to Maximize Mutual Information for Dynamic Feature Selection
Learning to Maximize Mutual Information for Dynamic Feature Selection
Ian Covert
Wei Qiu
Mingyu Lu
Nayoon Kim
Nathan White
Su-In Lee
24
29
0
02 Jan 2023
Risk-Sensitive Reinforcement Learning with Exponential Criteria
Risk-Sensitive Reinforcement Learning with Exponential Criteria
Erfaun Noorani
Christos N. Mavridis
John S. Baras
30
8
0
18 Dec 2022
Learning the joint distribution of two sequences using little or no
  paired data
Learning the joint distribution of two sequences using little or no paired data
Soroosh Mariooryad
Matt Shannon
Siyuan Ma
Tom Bagby
David Kao
Daisy Stanton
Eric Battenberg
RJ Skerry-Ryan
24
2
0
06 Dec 2022
Automatic Differentiation of Programs with Discrete Randomness
Automatic Differentiation of Programs with Discrete Randomness
Gaurav Arya
Moritz Schauer
Frank Schafer
Chris Rackauckas
23
34
0
16 Oct 2022
Joint control variate for faster black-box variational inference
Joint control variate for faster black-box variational inference
Xi Wang
Tomas Geffner
Justin Domke
BDL
DRL
19
0
0
13 Oct 2022
SIMPLE: A Gradient Estimator for $k$-Subset Sampling
SIMPLE: A Gradient Estimator for kkk-Subset Sampling
Kareem Ahmed
Zhe Zeng
Mathias Niepert
Mathias Niepert
BDL
48
24
0
04 Oct 2022
GFlowNets and variational inference
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
134
77
0
02 Oct 2022
Variational Open-Domain Question Answering
Variational Open-Domain Question Answering
Valentin Liévin
Andreas Geert Motzfeldt
Ida Riis Jensen
Ole Winther
OOD
BDL
36
8
0
23 Sep 2022
Adaptive Perturbation-Based Gradient Estimation for Discrete Latent
  Variable Models
Adaptive Perturbation-Based Gradient Estimation for Discrete Latent Variable Models
Pasquale Minervini
Luca Franceschi
Mathias Niepert
46
11
0
11 Sep 2022
Gradient Estimation for Binary Latent Variables via Gradient Variance
  Clipping
Gradient Estimation for Binary Latent Variables via Gradient Variance Clipping
Russell Z. Kunes
Mingzhang Yin
Max Land
Doron Haviv
D. Pe’er
Simon Tavaré
BDL
24
2
0
12 Aug 2022
Neural Set Function Extensions: Learning with Discrete Functions in High
  Dimensions
Neural Set Function Extensions: Learning with Discrete Functions in High Dimensions
Nikolaos Karalias
Joshua Robinson
Andreas Loukas
Stefanie Jegelka
37
8
0
08 Aug 2022
Augmentation Learning for Semi-Supervised Classification
Augmentation Learning for Semi-Supervised Classification
Tim Frommknecht
Pedro Alves Zipf
Quanfu Fan
Nina Shvetsova
Hilde Kuehne
23
2
0
03 Aug 2022
Ordered Subgraph Aggregation Networks
Ordered Subgraph Aggregation Networks
Chao Qian
Gaurav Rattan
Floris Geerts
Christopher Morris
Mathias Niepert
51
57
0
22 Jun 2022
Latent Variable Modelling Using Variational Autoencoders: A survey
Latent Variable Modelling Using Variational Autoencoders: A survey
Vasanth Kalingeri
CML
DRL
26
2
0
20 Jun 2022
A Survey of Automated Data Augmentation Algorithms for Deep
  Learning-based Image Classification Tasks
A Survey of Automated Data Augmentation Algorithms for Deep Learning-based Image Classification Tasks
Z. Yang
Richard Sinnott
James Bailey
Qiuhong Ke
26
39
0
14 Jun 2022
Sparse Graph Learning from Spatiotemporal Time Series
Sparse Graph Learning from Spatiotemporal Time Series
Andrea Cini
Daniele Zambon
Cesare Alippi
CML
AI4TS
43
18
0
26 May 2022
12345
Next