ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.00123
  4. Cited By
Backpropagation through the Void: Optimizing control variates for
  black-box gradient estimation

Backpropagation through the Void: Optimizing control variates for black-box gradient estimation

31 October 2017
Will Grathwohl
Dami Choi
Yuhuai Wu
Geoffrey Roeder
David Duvenaud
ArXivPDFHTML

Papers citing "Backpropagation through the Void: Optimizing control variates for black-box gradient estimation"

50 / 204 papers shown
Title
Routing Networks and the Challenges of Modular and Compositional
  Computation
Routing Networks and the Challenges of Modular and Compositional Computation
Clemens Rosenbaum
Ignacio Cases
Matthew D Riemer
Tim Klinger
40
78
0
29 Apr 2019
$L_0$-ARM: Network Sparsification via Stochastic Binary Optimization
L0L_0L0​-ARM: Network Sparsification via Stochastic Binary Optimization
Yang Li
Shihao Ji
MQ
14
15
0
09 Apr 2019
Learning Discrete Structures for Graph Neural Networks
Learning Discrete Structures for Graph Neural Networks
Luca Franceschi
Mathias Niepert
Massimiliano Pontil
X. He
GNN
30
410
0
28 Mar 2019
A RAD approach to deep mixture models
A RAD approach to deep mixture models
Laurent Dinh
Jascha Narain Sohl-Dickstein
Hugo Larochelle
Razvan Pascanu
14
45
0
18 Mar 2019
Adaptive Genomic Evolution of Neural Network Topologies (AGENT) for
  State-to-Action Mapping in Autonomous Agents
Adaptive Genomic Evolution of Neural Network Topologies (AGENT) for State-to-Action Mapping in Autonomous Agents
A. Behjat
Sharat Chidambaran
Souma Chowdhury
14
14
0
17 Mar 2019
Augment-Reinforce-Merge Policy Gradient for Binary Stochastic Policy
Augment-Reinforce-Merge Policy Gradient for Binary Stochastic Policy
Yunhao Tang
Mingzhang Yin
Mingyuan Zhou
9
0
0
13 Mar 2019
Imitation Learning of Factored Multi-agent Reactive Models
Michael Teng
T. Le
Adam Scibior
Frank Wood
DRL
19
1
0
12 Mar 2019
Cooperative Learning of Disjoint Syntax and Semantics
Cooperative Learning of Disjoint Syntax and Semantics
Serhii Havrylov
Germán Kruszewski
Armand Joulin
18
48
0
25 Feb 2019
Multilevel Monte Carlo Variational Inference
Multilevel Monte Carlo Variational Inference
Masahiro Fujisawa
Issei Sato
19
10
0
01 Feb 2019
New Tricks for Estimating Gradients of Expectations
New Tricks for Estimating Gradients of Expectations
Christian J. Walder
Paul Roussel
Richard Nock
Cheng Soon Ong
Masashi Sugiyama
8
4
0
31 Jan 2019
Improving Evolutionary Strategies with Generative Neural Networks
Improving Evolutionary Strategies with Generative Neural Networks
Louis Faury
Clément Calauzènes
Olivier Fercoq
Syrine Krichene
24
12
0
31 Jan 2019
GO Gradient for Expectation-Based Objectives
GO Gradient for Expectation-Based Objectives
Yulai Cong
Miaoyun Zhao
Ke Bai
Lawrence Carin
29
16
0
17 Jan 2019
Undirected Graphical Models as Approximate Posteriors
Undirected Graphical Models as Approximate Posteriors
Arash Vahdat
Evgeny Andriyash
W. Macready
14
2
0
11 Jan 2019
Credit Assignment Techniques in Stochastic Computation Graphs
Credit Assignment Techniques in Stochastic Computation Graphs
T. Weber
N. Heess
Lars Buesing
David Silver
15
45
0
07 Jan 2019
A Tutorial on Deep Latent Variable Models of Natural Language
A Tutorial on Deep Latent Variable Models of Natural Language
Yoon Kim
Sam Wiseman
Alexander M. Rush
BDL
VLM
30
42
0
17 Dec 2018
KF-LAX: Kronecker-factored curvature estimation for control variate
  optimization in reinforcement learning
KF-LAX: Kronecker-factored curvature estimation for control variate optimization in reinforcement learning
Mohammad Firouzi
14
0
0
11 Dec 2018
Coarse-Graining Auto-Encoders for Molecular Dynamics
Coarse-Graining Auto-Encoders for Molecular Dynamics
Wujie Wang
Rafael Gómez-Bombarelli
AI4CE
19
165
0
06 Dec 2018
Joint Mapping and Calibration via Differentiable Sensor Fusion
Joint Mapping and Calibration via Differentiable Sensor Fusion
Jonathan P. Chen
F. Obermeyer
V. Lyapunov
L. Gueguen
Noah D. Goodman
23
0
0
21 Nov 2018
Neural Joint Source-Channel Coding
Neural Joint Source-Channel Coding
Kristy Choi
Kedar Tatwawadi
Aditya Grover
Tsachy Weissman
Stefano Ermon
13
38
0
19 Nov 2018
Reward-estimation variance elimination in sequential decision processes
Reward-estimation variance elimination in sequential decision processes
S. Pankov
11
5
0
15 Nov 2018
Using Large Ensembles of Control Variates for Variational Inference
Using Large Ensembles of Control Variates for Variational Inference
Tomas Geffner
Justin Domke
BDL
14
34
0
30 Oct 2018
Kalman Gradient Descent: Adaptive Variance Reduction in Stochastic
  Optimization
Kalman Gradient Descent: Adaptive Variance Reduction in Stochastic Optimization
James Vuckovic
ODL
16
15
0
29 Oct 2018
Predictor-Corrector Policy Optimization
Predictor-Corrector Policy Optimization
Ching-An Cheng
Xinyan Yan
Nathan D. Ratliff
Byron Boots
OnRL
18
23
0
15 Oct 2018
Deep Reinforcement Learning
Deep Reinforcement Learning
Yuxi Li
VLM
OffRL
28
144
0
15 Oct 2018
Rao-Blackwellized Stochastic Gradients for Discrete Distributions
Rao-Blackwellized Stochastic Gradients for Discrete Distributions
Runjing Liu
Jeffrey Regier
Nilesh Tripuraneni
Michael I. Jordan
Jon D. McAuliffe
15
31
0
10 Oct 2018
Improved Gradient-Based Optimization Over Discrete Distributions
Improved Gradient-Based Optimization Over Discrete Distributions
Evgeny Andriyash
Arash Vahdat
W. Macready
16
9
0
29 Sep 2018
Discretely Relaxing Continuous Variables for tractable Variational
  Inference
Discretely Relaxing Continuous Variables for tractable Variational Inference
Trefor W. Evans
P. Nair
BDL
52
0
0
12 Sep 2018
ARM: Augment-REINFORCE-Merge Gradient for Stochastic Binary Networks
ARM: Augment-REINFORCE-Merge Gradient for Stochastic Binary Networks
Mingzhang Yin
Mingyuan Zhou
MQ
31
11
0
30 Jul 2018
Backprop-Q: Generalized Backpropagation for Stochastic Computation
  Graphs
Backprop-Q: Generalized Backpropagation for Stochastic Computation Graphs
Xiaoran Xu
Songpeng Zu
Yuan Zhang
Hanning Zhou
Wei Feng
BDL
8
4
0
25 Jul 2018
Latent Alignment and Variational Attention
Latent Alignment and Variational Attention
Yuntian Deng
Yoon Kim
Justin T. Chiu
Demi Guo
Alexander M. Rush
BDL
18
110
0
10 Jul 2018
Memory Augmented Policy Optimization for Program Synthesis and Semantic
  Parsing
Memory Augmented Policy Optimization for Program Synthesis and Semantic Parsing
Chen Liang
Mohammad Norouzi
Jonathan Berant
Quoc V. Le
Ni Lao
16
134
0
06 Jul 2018
Variance Reduction for Reinforcement Learning in Input-Driven
  Environments
Variance Reduction for Reinforcement Learning in Input-Driven Environments
Hongzi Mao
S. Venkatakrishnan
Malte Schwarzkopf
Mohammad Alizadeh
OffRL
41
94
0
06 Jul 2018
Tensor Monte Carlo: particle methods for the GPU era
Tensor Monte Carlo: particle methods for the GPU era
Laurence Aitchison
BDL
DRL
27
13
0
22 Jun 2018
Pathwise Derivatives for Multivariate Distributions
Pathwise Derivatives for Multivariate Distributions
M. Jankowiak
Theofanis Karaletsos
27
11
0
05 Jun 2018
Pathwise Derivatives Beyond the Reparameterization Trick
Pathwise Derivatives Beyond the Reparameterization Trick
M. Jankowiak
F. Obermeyer
30
110
0
05 Jun 2018
Reparameterization Gradient for Non-differentiable Models
Reparameterization Gradient for Non-differentiable Models
Wonyeol Lee
Hangyeol Yu
Hongseok Yang
DRL
25
30
0
01 Jun 2018
Theory and Experiments on Vector Quantized Autoencoders
Theory and Experiments on Vector Quantized Autoencoders
Aurko Roy
Ashish Vaswani
Arvind Neelakantan
Niki Parmar
11
85
0
28 May 2018
Revisiting Reweighted Wake-Sleep for Models with Stochastic Control Flow
Revisiting Reweighted Wake-Sleep for Models with Stochastic Control Flow
T. Le
Adam R. Kosiorek
N. Siddharth
Yee Whye Teh
Frank Wood
BDL
17
23
0
26 May 2018
Fast Policy Learning through Imitation and Reinforcement
Fast Policy Learning through Imitation and Reinforcement
Ching-An Cheng
Xinyan Yan
Nolan Wagener
Byron Boots
26
83
0
26 May 2018
Zeroth-Order Stochastic Variance Reduction for Nonconvex Optimization
Zeroth-Order Stochastic Variance Reduction for Nonconvex Optimization
Sijia Liu
B. Kailkhura
Pin-Yu Chen
Pai-Shun Ting
Shiyu Chang
Lisa Amini
14
175
0
25 May 2018
DVAE#: Discrete Variational Autoencoders with Relaxed Boltzmann Priors
DVAE#: Discrete Variational Autoencoders with Relaxed Boltzmann Priors
Arash Vahdat
Evgeny Andriyash
W. Macready
21
49
0
18 May 2018
GumBolt: Extending Gumbel trick to Boltzmann priors
GumBolt: Extending Gumbel trick to Boltzmann priors
Amir Khoshaman
Mohammad H. Amin
19
14
0
18 May 2018
Policy Optimization with Second-Order Advantage Information
Policy Optimization with Second-Order Advantage Information
Jiajin Li
Baoxiang Wang
22
6
0
09 May 2018
Adversarial Contrastive Estimation
Adversarial Contrastive Estimation
A. Bose
Huan Ling
Yanshuai Cao
13
56
0
09 May 2018
Reward Estimation for Variance Reduction in Deep Reinforcement Learning
Reward Estimation for Variance Reduction in Deep Reinforcement Learning
Joshua Romoff
Peter Henderson
Alexandre Piché
Vincent François-Lavet
Joelle Pineau
6
42
0
09 May 2018
ReGAN: RE[LAX|BAR|INFORCE] based Sequence Generation using GANs
ReGAN: RE[LAX|BAR|INFORCE] based Sequence Generation using GANs
Aparna Balagopalan
S. Gorti
Mathieu Ravaut
Raeid Saqur
GAN
14
2
0
08 May 2018
Variational Rejection Sampling
Variational Rejection Sampling
Aditya Grover
Ramki Gummadi
Miguel Lazaro-Gredilla
Dale Schuurmans
Stefano Ermon
BDL
15
32
0
05 Apr 2018
Fast Decoding in Sequence Models using Discrete Latent Variables
Fast Decoding in Sequence Models using Discrete Latent Variables
Łukasz Kaiser
Aurko Roy
Ashish Vaswani
Niki Parmar
Samy Bengio
Jakob Uszkoreit
Noam M. Shazeer
16
230
0
09 Mar 2018
Physical Layer Communications System Design Over-the-Air Using
  Adversarial Networks
Physical Layer Communications System Design Over-the-Air Using Adversarial Networks
Tim O'Shea
Tamoghna Roy
Nathan E. West
Benjamin C. Hilburn
GAN
14
109
0
08 Mar 2018
The Mirage of Action-Dependent Baselines in Reinforcement Learning
The Mirage of Action-Dependent Baselines in Reinforcement Learning
George Tucker
Surya Bhupatiraju
S. Gu
Richard Turner
Zoubin Ghahramani
Sergey Levine
OffRL
27
126
0
27 Feb 2018
Previous
12345
Next