ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.00123
  4. Cited By
Backpropagation through the Void: Optimizing control variates for
  black-box gradient estimation

Backpropagation through the Void: Optimizing control variates for black-box gradient estimation

31 October 2017
Will Grathwohl
Dami Choi
Yuhuai Wu
Geoffrey Roeder
David Duvenaud
ArXivPDFHTML

Papers citing "Backpropagation through the Void: Optimizing control variates for black-box gradient estimation"

50 / 204 papers shown
Title
VFDS: Variational Foresight Dynamic Selection in Bayesian Neural
  Networks for Efficient Human Activity Recognition
VFDS: Variational Foresight Dynamic Selection in Bayesian Neural Networks for Efficient Human Activity Recognition
Randy Ardywibowo
Shahin Boluki
Zhangyang Wang
Bobak J. Mortazavi
Shuai Huang
Xiaoning Qian
14
2
0
31 Mar 2022
Gradient Estimation with Discrete Stein Operators
Gradient Estimation with Discrete Stein Operators
Jiaxin Shi
Yuhao Zhou
Jessica Hwang
Michalis K. Titsias
Lester W. Mackey
33
22
0
19 Feb 2022
Policy Learning and Evaluation with Randomized Quasi-Monte Carlo
Policy Learning and Evaluation with Randomized Quasi-Monte Carlo
Sébastien M. R. Arnold
P. LÉcuyer
Liyu Chen
Yi-fan Chen
Fei Sha
OffRL
37
4
0
16 Feb 2022
Deep invariant networks with differentiable augmentation layers
Deep invariant networks with differentiable augmentation layers
Cédric Rommel
Thomas Moreau
Alexandre Gramfort
OOD
27
8
0
04 Feb 2022
Zeroth-Order Actor-Critic: An Evolutionary Framework for Sequential Decision Problems
Zeroth-Order Actor-Critic: An Evolutionary Framework for Sequential Decision Problems
Yuheng Lei
Jianyu Chen
Guojian Zhan
Tao Zhang
Jiangtao Li
Jianyu Chen
Shengbo Eben Li
Sifa Zheng
OffRL
23
2
0
29 Jan 2022
SABLAS: Learning Safe Control for Black-box Dynamical Systems
SABLAS: Learning Safe Control for Black-box Dynamical Systems
Zengyi Qin
Dawei Sun
Chuchu Fan
26
43
0
06 Jan 2022
Programming with Neural Surrogates of Programs
Programming with Neural Surrogates of Programs
Alex Renda
Yi Ding
Michael Carbin
16
2
0
12 Dec 2021
Learning Generalized Gumbel-max Causal Mechanisms
Learning Generalized Gumbel-max Causal Mechanisms
Guy Lorberbom
Daniel D. Johnson
Chris J. Maddison
Daniel Tarlow
Tamir Hazan
CML
14
20
0
11 Nov 2021
Double Control Variates for Gradient Estimation in Discrete Latent
  Variable Models
Double Control Variates for Gradient Estimation in Discrete Latent Variable Models
Michalis K. Titsias
Jiaxin Shi
BDL
DRL
28
5
0
09 Nov 2021
Leveraging Recursive Gumbel-Max Trick for Approximate Inference in
  Combinatorial Spaces
Leveraging Recursive Gumbel-Max Trick for Approximate Inference in Combinatorial Spaces
Kirill Struminsky
Artyom Gadetsky
D. Rakitin
Danil Karpushkin
Dmitry Vetrov
BDL
27
9
0
28 Oct 2021
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator
Alek Dimitriev
Mingyuan Zhou
14
7
0
26 Oct 2021
Hindsight Network Credit Assignment: Efficient Credit Assignment in
  Networks of Discrete Stochastic Units
Hindsight Network Credit Assignment: Efficient Credit Assignment in Networks of Discrete Stochastic Units
K. Young
31
0
0
14 Oct 2021
Bias-Variance Tradeoffs in Single-Sample Binary Gradient Estimators
Bias-Variance Tradeoffs in Single-Sample Binary Gradient Estimators
Alexander Shekhovtsov
MQ
31
4
0
07 Oct 2021
RieszNet and ForestRiesz: Automatic Debiased Machine Learning with
  Neural Nets and Random Forests
RieszNet and ForestRiesz: Automatic Debiased Machine Learning with Neural Nets and Random Forests
Victor Chernozhukov
Whitney Newey
Victor Quintas-Martinez
Vasilis Syrgkanis
CML
13
36
0
06 Oct 2021
A Review of the Gumbel-max Trick and its Extensions for Discrete
  Stochasticity in Machine Learning
A Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in Machine Learning
Iris A. M. Huijben
W. Kool
Max B. Paulus
Ruud J. G. van Sloun
28
94
0
04 Oct 2021
Smooth Normalizing Flows
Smooth Normalizing Flows
Jonas Köhler
Andreas Krämer
Frank Noé
29
53
0
01 Oct 2021
Self-Conditioned Probabilistic Learning of Video Rescaling
Self-Conditioned Probabilistic Learning of Video Rescaling
Yuan Tian
Guo Lu
Xiongkuo Min
Zhaohui Che
Guangtao Zhai
G. Guo
Zhiyong Gao
30
26
0
24 Jul 2021
An overview of mixing augmentation methods and augmentation strategies
An overview of mixing augmentation methods and augmentation strategies
Dominik Lewy
Jacek Mańdziuk
25
61
0
21 Jul 2021
Coordinate-wise Control Variates for Deep Policy Gradients
Coordinate-wise Control Variates for Deep Policy Gradients
Yuanyi Zhong
Yuanshuo Zhou
Jian-wei Peng
BDL
21
1
0
11 Jul 2021
Hybrid Memoised Wake-Sleep: Approximate Inference at the
  Discrete-Continuous Interface
Hybrid Memoised Wake-Sleep: Approximate Inference at the Discrete-Continuous Interface
T. Le
K. M. Collins
Luke B. Hewitt
Kevin Ellis
N. Siddharth
S. Gershman
J. Tenenbaum
122
5
0
04 Jul 2021
CADDA: Class-wise Automatic Differentiable Data Augmentation for EEG
  Signals
CADDA: Class-wise Automatic Differentiable Data Augmentation for EEG Signals
Cédric Rommel
Thomas Moreau
Joseph Paillard
Alexandre Gramfort
19
37
0
25 Jun 2021
Coupled Gradient Estimators for Discrete Latent Variables
Coupled Gradient Estimators for Discrete Latent Variables
Zhe Dong
A. Mnih
George Tucker
BDL
38
13
0
15 Jun 2021
Variational Causal Networks: Approximate Bayesian Inference over Causal
  Structures
Variational Causal Networks: Approximate Bayesian Inference over Causal Structures
Yashas Annadani
Jonas Rothfuss
Alexandre Lacoste
Nino Scherrer
Anirudh Goyal
Yoshua Bengio
Stefan Bauer
BDL
CML
32
48
0
14 Jun 2021
Multi-Facet Clustering Variational Autoencoders
Multi-Facet Clustering Variational Autoencoders
Fabian Falck
Haoting Zhang
M. Willetts
G. Nicholson
C. Yau
Chris Holmes
DRL
28
40
0
09 Jun 2021
Implicit MLE: Backpropagating Through Discrete Exponential Family
  Distributions
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions
Mathias Niepert
Pasquale Minervini
Luca Franceschi
32
81
0
03 Jun 2021
A unified view of likelihood ratio and reparameterization gradients
A unified view of likelihood ratio and reparameterization gradients
Paavo Parmas
Masashi Sugiyama
20
9
0
31 May 2021
ARMS: Antithetic-REINFORCE-Multi-Sample Gradient for Binary Variables
ARMS: Antithetic-REINFORCE-Multi-Sample Gradient for Binary Variables
Alek Dimitriev
Mingyuan Zhou
21
12
0
28 May 2021
Direct Differentiable Augmentation Search
Direct Differentiable Augmentation Search
Aoming Liu
Zehao Huang
Zhiwu Huang
Naiyan Wang
33
33
0
09 Apr 2021
Storchastic: A Framework for General Stochastic Automatic
  Differentiation
Storchastic: A Framework for General Stochastic Automatic Differentiation
Emile van Krieken
Jakub M. Tomczak
A. T. Teije
ODL
OffRL
31
15
0
01 Apr 2021
Co-Adaptation of Algorithmic and Implementational Innovations in
  Inference-based Deep Reinforcement Learning
Co-Adaptation of Algorithmic and Implementational Innovations in Inference-based Deep Reinforcement Learning
Hiroki Furuta
Tadashi Kozuno
T. Matsushima
Y. Matsuo
S. Gu
18
14
0
31 Mar 2021
Post-Processing of MCMC
Post-Processing of MCMC
Leah F. South
M. Riabiz
Onur Teymur
Chris J. Oates
22
17
0
30 Mar 2021
Modeling Graph Node Correlations with Neighbor Mixture Models
Modeling Graph Node Correlations with Neighbor Mixture Models
Linfeng Liu
Michael Hughes
Liping Liu
31
0
0
29 Mar 2021
Model-free Policy Learning with Reward Gradients
Model-free Policy Learning with Reward Gradients
Qingfeng Lan
Samuele Tosatto
Homayoon Farrahi
Rupam Mahmood
19
6
0
09 Mar 2021
Mind Mappings: Enabling Efficient Algorithm-Accelerator Mapping Space
  Search
Mind Mappings: Enabling Efficient Algorithm-Accelerator Mapping Space Search
Kartik Hegde
Po-An Tsai
Sitao Huang
Vikas Chandra
A. Parashar
Christopher W. Fletcher
26
92
0
02 Mar 2021
Factored Policy Gradients: Leveraging Structure for Efficient Learning
  in MOMDPs
Factored Policy Gradients: Leveraging Structure for Efficient Learning in MOMDPs
Thomas Spooner
N. Vadori
Sumitra Ganesh
30
7
0
20 Feb 2021
Latent Template Induction with Gumbel-CRFs
Latent Template Induction with Gumbel-CRFs
Yao Fu
Chuanqi Tan
Bin Bi
Mosha Chen
Yansong Feng
Alexander M. Rush
BDL
13
12
0
29 Nov 2020
Direct Evolutionary Optimization of Variational Autoencoders With Binary
  Latents
Direct Evolutionary Optimization of Variational Autoencoders With Binary Latents
E. Guiraud
Jakob Drefs
Jörg Lücke
DRL
40
3
0
27 Nov 2020
TaylorGAN: Neighbor-Augmented Policy Update for Sample-Efficient Natural
  Language Generation
TaylorGAN: Neighbor-Augmented Policy Update for Sample-Efficient Natural Language Generation
Chun-Hsing Lin
Siang-Ruei Wu
Hung-yi Lee
Yun-Nung Chen
LLMAG
10
3
0
27 Nov 2020
Learning Discrete Energy-based Models via Auxiliary-variable Local
  Exploration
Learning Discrete Energy-based Models via Auxiliary-variable Local Exploration
H. Dai
Rishabh Singh
Bo Dai
Charles Sutton
Dale Schuurmans
27
27
0
10 Nov 2020
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
Lorenz Richter
Ayman Boustati
Nikolas Nusken
Francisco J. R. Ruiz
Ömer Deniz Akyildiz
DRL
138
48
0
20 Oct 2020
Rao-Blackwellizing the Straight-Through Gumbel-Softmax Gradient
  Estimator
Rao-Blackwellizing the Straight-Through Gumbel-Softmax Gradient Estimator
Max B. Paulus
Chris J. Maddison
Andreas Krause
BDL
42
38
0
09 Oct 2020
DiffTune: Optimizing CPU Simulator Parameters with Learned
  Differentiable Surrogates
DiffTune: Optimizing CPU Simulator Parameters with Learned Differentiable Surrogates
Alex Renda
Yishen Chen
Charith Mendis
Michael Carbin
8
35
0
08 Oct 2020
Beyond variance reduction: Understanding the true impact of baselines on
  policy optimization
Beyond variance reduction: Understanding the true impact of baselines on policy optimization
Wesley Chung
Valentin Thomas
Marlos C. Machado
Nicolas Le Roux
OffRL
14
22
0
31 Aug 2020
Natural Reweighted Wake-Sleep
Natural Reweighted Wake-Sleep
Csongor-Huba Várady
Riccardo Volpi
Luigi Malagò
Nihat Ay
BDL
21
0
0
15 Aug 2020
Optimal Variance Control of the Score Function Gradient Estimator for
  Importance Weighted Bounds
Optimal Variance Control of the Score Function Gradient Estimator for Importance Weighted Bounds
Valentin Liévin
Andrea Dittadi
Anders Christensen
Ole Winther
DRL
30
6
0
05 Aug 2020
Foveation for Segmentation of Ultra-High Resolution Images
Foveation for Segmentation of Ultra-High Resolution Images
Chen Jin
Ryutaro Tanno
Moucheng Xu
T. Mertzanidou
Daniel C. Alexander
AI4TS
19
4
0
29 Jul 2020
Approximation Based Variance Reduction for Reparameterization Gradients
Approximation Based Variance Reduction for Reparameterization Gradients
Tomas Geffner
Justin Domke
BDL
DRL
23
10
0
29 Jul 2020
Relaxed-Responsibility Hierarchical Discrete VAEs
Relaxed-Responsibility Hierarchical Discrete VAEs
M. Willetts
Xenia Miscouridou
Stephen J. Roberts
Chris Holmes
BDL
DRL
30
5
0
14 Jul 2020
NVAE: A Deep Hierarchical Variational Autoencoder
NVAE: A Deep Hierarchical Variational Autoencoder
Arash Vahdat
Jan Kautz
BDL
15
894
0
08 Jul 2020
Learning to learn generative programs with Memoised Wake-Sleep
Learning to learn generative programs with Memoised Wake-Sleep
Luke B. Hewitt
T. Le
J. Tenenbaum
CLL
20
26
0
06 Jul 2020
Previous
12345
Next