Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.00123
Cited By
Backpropagation through the Void: Optimizing control variates for black-box gradient estimation
31 October 2017
Will Grathwohl
Dami Choi
Yuhuai Wu
Geoffrey Roeder
David Duvenaud
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Backpropagation through the Void: Optimizing control variates for black-box gradient estimation"
50 / 204 papers shown
Title
VFDS: Variational Foresight Dynamic Selection in Bayesian Neural Networks for Efficient Human Activity Recognition
Randy Ardywibowo
Shahin Boluki
Zhangyang Wang
Bobak J. Mortazavi
Shuai Huang
Xiaoning Qian
14
2
0
31 Mar 2022
Gradient Estimation with Discrete Stein Operators
Jiaxin Shi
Yuhao Zhou
Jessica Hwang
Michalis K. Titsias
Lester W. Mackey
33
22
0
19 Feb 2022
Policy Learning and Evaluation with Randomized Quasi-Monte Carlo
Sébastien M. R. Arnold
P. LÉcuyer
Liyu Chen
Yi-fan Chen
Fei Sha
OffRL
37
4
0
16 Feb 2022
Deep invariant networks with differentiable augmentation layers
Cédric Rommel
Thomas Moreau
Alexandre Gramfort
OOD
27
8
0
04 Feb 2022
Zeroth-Order Actor-Critic: An Evolutionary Framework for Sequential Decision Problems
Yuheng Lei
Jianyu Chen
Guojian Zhan
Tao Zhang
Jiangtao Li
Jianyu Chen
Shengbo Eben Li
Sifa Zheng
OffRL
23
2
0
29 Jan 2022
SABLAS: Learning Safe Control for Black-box Dynamical Systems
Zengyi Qin
Dawei Sun
Chuchu Fan
26
43
0
06 Jan 2022
Programming with Neural Surrogates of Programs
Alex Renda
Yi Ding
Michael Carbin
16
2
0
12 Dec 2021
Learning Generalized Gumbel-max Causal Mechanisms
Guy Lorberbom
Daniel D. Johnson
Chris J. Maddison
Daniel Tarlow
Tamir Hazan
CML
14
20
0
11 Nov 2021
Double Control Variates for Gradient Estimation in Discrete Latent Variable Models
Michalis K. Titsias
Jiaxin Shi
BDL
DRL
28
5
0
09 Nov 2021
Leveraging Recursive Gumbel-Max Trick for Approximate Inference in Combinatorial Spaces
Kirill Struminsky
Artyom Gadetsky
D. Rakitin
Danil Karpushkin
Dmitry Vetrov
BDL
27
9
0
28 Oct 2021
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator
Alek Dimitriev
Mingyuan Zhou
14
7
0
26 Oct 2021
Hindsight Network Credit Assignment: Efficient Credit Assignment in Networks of Discrete Stochastic Units
K. Young
31
0
0
14 Oct 2021
Bias-Variance Tradeoffs in Single-Sample Binary Gradient Estimators
Alexander Shekhovtsov
MQ
31
4
0
07 Oct 2021
RieszNet and ForestRiesz: Automatic Debiased Machine Learning with Neural Nets and Random Forests
Victor Chernozhukov
Whitney Newey
Victor Quintas-Martinez
Vasilis Syrgkanis
CML
13
36
0
06 Oct 2021
A Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in Machine Learning
Iris A. M. Huijben
W. Kool
Max B. Paulus
Ruud J. G. van Sloun
28
94
0
04 Oct 2021
Smooth Normalizing Flows
Jonas Köhler
Andreas Krämer
Frank Noé
29
53
0
01 Oct 2021
Self-Conditioned Probabilistic Learning of Video Rescaling
Yuan Tian
Guo Lu
Xiongkuo Min
Zhaohui Che
Guangtao Zhai
G. Guo
Zhiyong Gao
30
26
0
24 Jul 2021
An overview of mixing augmentation methods and augmentation strategies
Dominik Lewy
Jacek Mańdziuk
25
61
0
21 Jul 2021
Coordinate-wise Control Variates for Deep Policy Gradients
Yuanyi Zhong
Yuanshuo Zhou
Jian-wei Peng
BDL
21
1
0
11 Jul 2021
Hybrid Memoised Wake-Sleep: Approximate Inference at the Discrete-Continuous Interface
T. Le
K. M. Collins
Luke B. Hewitt
Kevin Ellis
N. Siddharth
S. Gershman
J. Tenenbaum
122
5
0
04 Jul 2021
CADDA: Class-wise Automatic Differentiable Data Augmentation for EEG Signals
Cédric Rommel
Thomas Moreau
Joseph Paillard
Alexandre Gramfort
19
37
0
25 Jun 2021
Coupled Gradient Estimators for Discrete Latent Variables
Zhe Dong
A. Mnih
George Tucker
BDL
38
13
0
15 Jun 2021
Variational Causal Networks: Approximate Bayesian Inference over Causal Structures
Yashas Annadani
Jonas Rothfuss
Alexandre Lacoste
Nino Scherrer
Anirudh Goyal
Yoshua Bengio
Stefan Bauer
BDL
CML
32
48
0
14 Jun 2021
Multi-Facet Clustering Variational Autoencoders
Fabian Falck
Haoting Zhang
M. Willetts
G. Nicholson
C. Yau
Chris Holmes
DRL
28
40
0
09 Jun 2021
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions
Mathias Niepert
Pasquale Minervini
Luca Franceschi
32
81
0
03 Jun 2021
A unified view of likelihood ratio and reparameterization gradients
Paavo Parmas
Masashi Sugiyama
20
9
0
31 May 2021
ARMS: Antithetic-REINFORCE-Multi-Sample Gradient for Binary Variables
Alek Dimitriev
Mingyuan Zhou
21
12
0
28 May 2021
Direct Differentiable Augmentation Search
Aoming Liu
Zehao Huang
Zhiwu Huang
Naiyan Wang
33
33
0
09 Apr 2021
Storchastic: A Framework for General Stochastic Automatic Differentiation
Emile van Krieken
Jakub M. Tomczak
A. T. Teije
ODL
OffRL
31
15
0
01 Apr 2021
Co-Adaptation of Algorithmic and Implementational Innovations in Inference-based Deep Reinforcement Learning
Hiroki Furuta
Tadashi Kozuno
T. Matsushima
Y. Matsuo
S. Gu
18
14
0
31 Mar 2021
Post-Processing of MCMC
Leah F. South
M. Riabiz
Onur Teymur
Chris J. Oates
22
17
0
30 Mar 2021
Modeling Graph Node Correlations with Neighbor Mixture Models
Linfeng Liu
Michael Hughes
Liping Liu
31
0
0
29 Mar 2021
Model-free Policy Learning with Reward Gradients
Qingfeng Lan
Samuele Tosatto
Homayoon Farrahi
Rupam Mahmood
19
6
0
09 Mar 2021
Mind Mappings: Enabling Efficient Algorithm-Accelerator Mapping Space Search
Kartik Hegde
Po-An Tsai
Sitao Huang
Vikas Chandra
A. Parashar
Christopher W. Fletcher
26
92
0
02 Mar 2021
Factored Policy Gradients: Leveraging Structure for Efficient Learning in MOMDPs
Thomas Spooner
N. Vadori
Sumitra Ganesh
30
7
0
20 Feb 2021
Latent Template Induction with Gumbel-CRFs
Yao Fu
Chuanqi Tan
Bin Bi
Mosha Chen
Yansong Feng
Alexander M. Rush
BDL
13
12
0
29 Nov 2020
Direct Evolutionary Optimization of Variational Autoencoders With Binary Latents
E. Guiraud
Jakob Drefs
Jörg Lücke
DRL
40
3
0
27 Nov 2020
TaylorGAN: Neighbor-Augmented Policy Update for Sample-Efficient Natural Language Generation
Chun-Hsing Lin
Siang-Ruei Wu
Hung-yi Lee
Yun-Nung Chen
LLMAG
10
3
0
27 Nov 2020
Learning Discrete Energy-based Models via Auxiliary-variable Local Exploration
H. Dai
Rishabh Singh
Bo Dai
Charles Sutton
Dale Schuurmans
27
27
0
10 Nov 2020
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
Lorenz Richter
Ayman Boustati
Nikolas Nusken
Francisco J. R. Ruiz
Ömer Deniz Akyildiz
DRL
138
48
0
20 Oct 2020
Rao-Blackwellizing the Straight-Through Gumbel-Softmax Gradient Estimator
Max B. Paulus
Chris J. Maddison
Andreas Krause
BDL
42
38
0
09 Oct 2020
DiffTune: Optimizing CPU Simulator Parameters with Learned Differentiable Surrogates
Alex Renda
Yishen Chen
Charith Mendis
Michael Carbin
8
35
0
08 Oct 2020
Beyond variance reduction: Understanding the true impact of baselines on policy optimization
Wesley Chung
Valentin Thomas
Marlos C. Machado
Nicolas Le Roux
OffRL
14
22
0
31 Aug 2020
Natural Reweighted Wake-Sleep
Csongor-Huba Várady
Riccardo Volpi
Luigi Malagò
Nihat Ay
BDL
21
0
0
15 Aug 2020
Optimal Variance Control of the Score Function Gradient Estimator for Importance Weighted Bounds
Valentin Liévin
Andrea Dittadi
Anders Christensen
Ole Winther
DRL
30
6
0
05 Aug 2020
Foveation for Segmentation of Ultra-High Resolution Images
Chen Jin
Ryutaro Tanno
Moucheng Xu
T. Mertzanidou
Daniel C. Alexander
AI4TS
19
4
0
29 Jul 2020
Approximation Based Variance Reduction for Reparameterization Gradients
Tomas Geffner
Justin Domke
BDL
DRL
23
10
0
29 Jul 2020
Relaxed-Responsibility Hierarchical Discrete VAEs
M. Willetts
Xenia Miscouridou
Stephen J. Roberts
Chris Holmes
BDL
DRL
30
5
0
14 Jul 2020
NVAE: A Deep Hierarchical Variational Autoencoder
Arash Vahdat
Jan Kautz
BDL
15
894
0
08 Jul 2020
Learning to learn generative programs with Memoised Wake-Sleep
Luke B. Hewitt
T. Le
J. Tenenbaum
CLL
20
26
0
06 Jul 2020
Previous
1
2
3
4
5
Next