Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.00292
Cited By
v1
v2
v3 (latest)
Learning Generative Models with Sinkhorn Divergences
1 June 2017
Aude Genevay
Gabriel Peyré
Marco Cuturi
OT
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning Generative Models with Sinkhorn Divergences"
32 / 382 papers shown
Title
Sorting out Lipschitz function approximation
Cem Anil
James Lucas
Roger C. Grosse
98
325
0
13 Nov 2018
Empirical Regularized Optimal Transport: Statistical Theory and Applications
M. Klatt
Carla Tameling
Axel Munk
OT
81
61
0
23 Oct 2018
Interpolating between Optimal Transport and MMD using Sinkhorn Divergences
Jean Feydy
Thibault Séjourné
François-Xavier Vialard
S. Amari
A. Trouvé
Gabriel Peyré
OT
138
533
0
18 Oct 2018
Point Cloud GAN
Chun-Liang Li
Manzil Zaheer
Yang Zhang
Barnabás Póczós
Ruslan Salakhutdinov
3DPC
99
212
0
13 Oct 2018
Entropic GANs meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs
Yogesh Balaji
Hamed Hassani
Rama Chellappa
Soheil Feizi
GAN
DRL
88
21
0
09 Oct 2018
Sample Complexity of Sinkhorn divergences
Aude Genevay
Lénaïc Chizat
Francis R. Bach
Marco Cuturi
Gabriel Peyré
OT
105
291
0
05 Oct 2018
Sinkhorn AutoEncoders
Giorgio Patrini
Rianne van den Berg
Patrick Forré
M. Carioni
Samarth Bhargav
Max Welling
Tim Genewein
Frank Nielsen
DiffM
76
0
0
02 Oct 2018
Entropic optimal transport is maximum-likelihood deconvolution
Philippe Rigollet
Jonathan Niles-Weed
OT
98
78
0
14 Sep 2018
Second-order Democratic Aggregation
Tsung-Yu Lin
Subhransu Maji
Piotr Koniusz
60
31
0
22 Aug 2018
Neural Network Encapsulation
Hongyang Li
Xiaoyang Guo
Bo Dai
Wanli Ouyang
Xiaogang Wang
62
51
0
11 Aug 2018
Towards Optimal Transport with Global Invariances
David Alvarez-Melis
Stefanie Jegelka
Tommi Jaakkola
OT
92
71
0
25 Jun 2018
Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions
Antoine Liutkus
Umut Simsekli
Szymon Majewski
Alain Durmus
Fabian-Robert Stöter
DiffM
98
122
0
21 Jun 2018
Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance
Giulia Luise
Alessandro Rudi
Massimiliano Pontil
C. Ciliberto
OT
91
133
0
30 May 2018
On gradient regularizers for MMD GANs
Michael Arbel
Danica J. Sutherland
Mikolaj Binkowski
Arthur Gretton
97
95
0
29 May 2018
Wasserstein Variational Inference
L. Ambrogioni
Umut Güçlü
Yağmur Güçlütürk
Max Hinne
E. Maris
Marcel van Gerven
BDL
DRL
118
42
0
29 May 2018
Unsupervised Alignment of Embeddings with Wasserstein Procrustes
Edouard Grave
Armand Joulin
Quentin Berthet
91
199
0
29 May 2018
Optimal Transport for structured data with application on graphs
Titouan Vayer
Laetitia Chapel
Rémi Flamary
R. Tavenard
Nicolas Courty
OT
97
275
0
23 May 2018
Wasserstein Measure Coresets
Sebastian Claici
Aude Genevay
Justin Solomon
28
14
0
18 May 2018
Generative Adversarial Networks (GANs): What it can generate and What it cannot?
P Manisha
Sujit Gujar
GAN
35
0
0
31 Mar 2018
Improving GANs Using Optimal Transport
Tim Salimans
Han Zhang
Alec Radford
Dimitris N. Metaxas
OT
GAN
125
324
0
15 Mar 2018
Computational Optimal Transport
Gabriel Peyré
Marco Cuturi
OT
347
2,172
0
01 Mar 2018
Distance Measure Machines
A. Rakotomamonjy
Abraham Traoré
Maxime Bérar
Rémi Flamary
Nicolas Courty
64
12
0
01 Mar 2018
Learning Latent Permutations with Gumbel-Sinkhorn Networks
Gonzalo E. Mena
David Belanger
Scott W. Linderman
Jasper Snoek
123
272
0
23 Feb 2018
On the Convergence and Robustness of Training GANs with Regularized Optimal Transport
Maziar Sanjabi
Jimmy Ba
Meisam Razaviyayn
Jason D. Lee
GAN
107
139
0
22 Feb 2018
Learning to Match via Inverse Optimal Transport
Ruilin Li
X. Ye
Haomin Zhou
H. Zha
FedML
91
49
0
10 Feb 2018
Innovative Non-parametric Texture Synthesis via Patch Permutations
Ryan Webster
38
4
0
14 Jan 2018
Demystifying MMD GANs
Mikolaj Binkowski
Danica J. Sutherland
Michael Arbel
Arthur Gretton
EGVM
274
1,507
0
04 Jan 2018
Sobolev GAN
Youssef Mroueh
Chun-Liang Li
Tom Sercu
Anant Raj
Yu Cheng
67
117
0
14 Nov 2017
A unified framework for hard and soft clustering with regularized optimal transport
Jean-Frédéric Diebold
Nicolas Papadakis
Arnaud Dessein
Charles-Alban Deledalle
FedML
98
8
0
12 Nov 2017
Parametric Adversarial Divergences are Good Losses for Generative Modeling
Gabriel Huang
Hugo Berard
Ahmed Touati
Gauthier Gidel
Pascal Vincent
Simon Lacoste-Julien
GAN
63
1
0
08 Aug 2017
Wasserstein Dictionary Learning: Optimal Transport-based unsupervised non-linear dictionary learning
M. Schmitz
Matthieu Heitz
Nicolas Bonneel
Fred-Maurice Ngole-Mboula
D. Coeurjolly
Marco Cuturi
Gabriel Peyré
Jean-Luc Starck
OT
116
138
0
07 Aug 2017
Semi-discrete optimal transport - the case p=1
Valentin N. Hartmann
Dominic Schuhmacher
OT
51
9
0
23 Jun 2017
Previous
1
2
3
4
5
6
7
8