ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.00292
  4. Cited By
Learning Generative Models with Sinkhorn Divergences
v1v2v3 (latest)

Learning Generative Models with Sinkhorn Divergences

1 June 2017
Aude Genevay
Gabriel Peyré
Marco Cuturi
    OT
ArXiv (abs)PDFHTML

Papers citing "Learning Generative Models with Sinkhorn Divergences"

32 / 382 papers shown
Title
Sorting out Lipschitz function approximation
Sorting out Lipschitz function approximation
Cem Anil
James Lucas
Roger C. Grosse
98
325
0
13 Nov 2018
Empirical Regularized Optimal Transport: Statistical Theory and
  Applications
Empirical Regularized Optimal Transport: Statistical Theory and Applications
M. Klatt
Carla Tameling
Axel Munk
OT
81
61
0
23 Oct 2018
Interpolating between Optimal Transport and MMD using Sinkhorn
  Divergences
Interpolating between Optimal Transport and MMD using Sinkhorn Divergences
Jean Feydy
Thibault Séjourné
François-Xavier Vialard
S. Amari
A. Trouvé
Gabriel Peyré
OT
138
533
0
18 Oct 2018
Point Cloud GAN
Point Cloud GAN
Chun-Liang Li
Manzil Zaheer
Yang Zhang
Barnabás Póczós
Ruslan Salakhutdinov
3DPC
99
212
0
13 Oct 2018
Entropic GANs meet VAEs: A Statistical Approach to Compute Sample
  Likelihoods in GANs
Entropic GANs meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs
Yogesh Balaji
Hamed Hassani
Rama Chellappa
Soheil Feizi
GANDRL
88
21
0
09 Oct 2018
Sample Complexity of Sinkhorn divergences
Sample Complexity of Sinkhorn divergences
Aude Genevay
Lénaïc Chizat
Francis R. Bach
Marco Cuturi
Gabriel Peyré
OT
105
291
0
05 Oct 2018
Sinkhorn AutoEncoders
Sinkhorn AutoEncoders
Giorgio Patrini
Rianne van den Berg
Patrick Forré
M. Carioni
Samarth Bhargav
Max Welling
Tim Genewein
Frank Nielsen
DiffM
76
0
0
02 Oct 2018
Entropic optimal transport is maximum-likelihood deconvolution
Entropic optimal transport is maximum-likelihood deconvolution
Philippe Rigollet
Jonathan Niles-Weed
OT
98
78
0
14 Sep 2018
Second-order Democratic Aggregation
Second-order Democratic Aggregation
Tsung-Yu Lin
Subhransu Maji
Piotr Koniusz
60
31
0
22 Aug 2018
Neural Network Encapsulation
Neural Network Encapsulation
Hongyang Li
Xiaoyang Guo
Bo Dai
Wanli Ouyang
Xiaogang Wang
62
51
0
11 Aug 2018
Towards Optimal Transport with Global Invariances
Towards Optimal Transport with Global Invariances
David Alvarez-Melis
Stefanie Jegelka
Tommi Jaakkola
OT
92
71
0
25 Jun 2018
Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal
  Transport and Diffusions
Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions
Antoine Liutkus
Umut Simsekli
Szymon Majewski
Alain Durmus
Fabian-Robert Stöter
DiffM
98
122
0
21 Jun 2018
Differential Properties of Sinkhorn Approximation for Learning with
  Wasserstein Distance
Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance
Giulia Luise
Alessandro Rudi
Massimiliano Pontil
C. Ciliberto
OT
91
133
0
30 May 2018
On gradient regularizers for MMD GANs
On gradient regularizers for MMD GANs
Michael Arbel
Danica J. Sutherland
Mikolaj Binkowski
Arthur Gretton
97
95
0
29 May 2018
Wasserstein Variational Inference
Wasserstein Variational Inference
L. Ambrogioni
Umut Güçlü
Yağmur Güçlütürk
Max Hinne
E. Maris
Marcel van Gerven
BDLDRL
118
42
0
29 May 2018
Unsupervised Alignment of Embeddings with Wasserstein Procrustes
Unsupervised Alignment of Embeddings with Wasserstein Procrustes
Edouard Grave
Armand Joulin
Quentin Berthet
91
199
0
29 May 2018
Optimal Transport for structured data with application on graphs
Optimal Transport for structured data with application on graphs
Titouan Vayer
Laetitia Chapel
Rémi Flamary
R. Tavenard
Nicolas Courty
OT
97
275
0
23 May 2018
Wasserstein Measure Coresets
Wasserstein Measure Coresets
Sebastian Claici
Aude Genevay
Justin Solomon
28
14
0
18 May 2018
Generative Adversarial Networks (GANs): What it can generate and What it
  cannot?
Generative Adversarial Networks (GANs): What it can generate and What it cannot?
P Manisha
Sujit Gujar
GAN
35
0
0
31 Mar 2018
Improving GANs Using Optimal Transport
Improving GANs Using Optimal Transport
Tim Salimans
Han Zhang
Alec Radford
Dimitris N. Metaxas
OTGAN
125
324
0
15 Mar 2018
Computational Optimal Transport
Computational Optimal Transport
Gabriel Peyré
Marco Cuturi
OT
347
2,172
0
01 Mar 2018
Distance Measure Machines
Distance Measure Machines
A. Rakotomamonjy
Abraham Traoré
Maxime Bérar
Rémi Flamary
Nicolas Courty
64
12
0
01 Mar 2018
Learning Latent Permutations with Gumbel-Sinkhorn Networks
Learning Latent Permutations with Gumbel-Sinkhorn Networks
Gonzalo E. Mena
David Belanger
Scott W. Linderman
Jasper Snoek
123
272
0
23 Feb 2018
On the Convergence and Robustness of Training GANs with Regularized
  Optimal Transport
On the Convergence and Robustness of Training GANs with Regularized Optimal Transport
Maziar Sanjabi
Jimmy Ba
Meisam Razaviyayn
Jason D. Lee
GAN
107
139
0
22 Feb 2018
Learning to Match via Inverse Optimal Transport
Learning to Match via Inverse Optimal Transport
Ruilin Li
X. Ye
Haomin Zhou
H. Zha
FedML
91
49
0
10 Feb 2018
Innovative Non-parametric Texture Synthesis via Patch Permutations
Innovative Non-parametric Texture Synthesis via Patch Permutations
Ryan Webster
38
4
0
14 Jan 2018
Demystifying MMD GANs
Demystifying MMD GANs
Mikolaj Binkowski
Danica J. Sutherland
Michael Arbel
Arthur Gretton
EGVM
274
1,507
0
04 Jan 2018
Sobolev GAN
Sobolev GAN
Youssef Mroueh
Chun-Liang Li
Tom Sercu
Anant Raj
Yu Cheng
67
117
0
14 Nov 2017
A unified framework for hard and soft clustering with regularized
  optimal transport
A unified framework for hard and soft clustering with regularized optimal transport
Jean-Frédéric Diebold
Nicolas Papadakis
Arnaud Dessein
Charles-Alban Deledalle
FedML
98
8
0
12 Nov 2017
Parametric Adversarial Divergences are Good Losses for Generative
  Modeling
Parametric Adversarial Divergences are Good Losses for Generative Modeling
Gabriel Huang
Hugo Berard
Ahmed Touati
Gauthier Gidel
Pascal Vincent
Simon Lacoste-Julien
GAN
63
1
0
08 Aug 2017
Wasserstein Dictionary Learning: Optimal Transport-based unsupervised
  non-linear dictionary learning
Wasserstein Dictionary Learning: Optimal Transport-based unsupervised non-linear dictionary learning
M. Schmitz
Matthieu Heitz
Nicolas Bonneel
Fred-Maurice Ngole-Mboula
D. Coeurjolly
Marco Cuturi
Gabriel Peyré
Jean-Luc Starck
OT
116
138
0
07 Aug 2017
Semi-discrete optimal transport - the case p=1
Semi-discrete optimal transport - the case p=1
Valentin N. Hartmann
Dominic Schuhmacher
OT
51
9
0
23 Jun 2017
Previous
12345678