Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.00292
Cited By
v1
v2
v3 (latest)
Learning Generative Models with Sinkhorn Divergences
1 June 2017
Aude Genevay
Gabriel Peyré
Marco Cuturi
OT
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning Generative Models with Sinkhorn Divergences"
50 / 382 papers shown
Title
Zero-Shot Recognition via Optimal Transport
Wenlin Wang
Hongteng Xu
Guoyin Wang
Wenqi Wang
Lawrence Carin
OT
33
2
0
20 Oct 2019
Differentiable Deep Clustering with Cluster Size Constraints
Aude Genevay
Gabriel Dulac-Arnold
Jean-Philippe Vert
53
40
0
20 Oct 2019
Quantitative stability of optimal transport maps and linearization of the 2-Wasserstein space
Q. Mérigot
Alex Delalande
Frédéric Chazal
OT
55
44
0
14 Oct 2019
Prescribed Generative Adversarial Networks
Adji Bousso Dieng
Francisco J. R. Ruiz
David M. Blei
Michalis K. Titsias
GAN
DRL
80
62
0
09 Oct 2019
Learning with minibatch Wasserstein : asymptotic and gradient properties
Kilian Fatras
Younes Zine
Rémi Flamary
Rémi Gribonval
Nicolas Courty
OT
102
96
0
09 Oct 2019
How Well Do WGANs Estimate the Wasserstein Metric?
Anton Mallasto
Guido Montúfar
Augusto Gerolin
53
26
0
09 Oct 2019
Spatio-Temporal Alignments: Optimal transport through space and time
H. Janati
Marco Cuturi
Alexandre Gramfort
OT
AI4TS
64
29
0
09 Oct 2019
A mathematical theory of cooperative communication
Pei Wang
Junqi Wang
P. Paranamana
Patrick Shafto
79
49
0
07 Oct 2019
On the estimation of the Wasserstein distance in generative models
Thomas Pinetz
Daniel Soukup
Thomas Pock
GAN
75
9
0
02 Oct 2019
Learning transport cost from subset correspondence
Ruishan Liu
Akshay Balsubramani
James Zou
OT
54
14
0
29 Sep 2019
UNITER: UNiversal Image-TExt Representation Learning
Yen-Chun Chen
Linjie Li
Licheng Yu
Ahmed El Kholy
Faisal Ahmed
Zhe Gan
Yu Cheng
Jingjing Liu
VLM
OT
134
449
0
25 Sep 2019
Enhancing Traffic Scene Predictions with Generative Adversarial Networks
Peter König
Sandra Aigner
Marco Körner
32
3
0
24 Sep 2019
Estimation of Wasserstein distances in the Spiked Transport Model
Jonathan Niles-Weed
Philippe Rigollet
87
103
0
16 Sep 2019
Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning
Daniel Kuhn
Peyman Mohajerin Esfahani
Viet Anh Nguyen
Soroosh Shafieezadeh-Abadeh
OOD
68
397
0
23 Aug 2019
Fast convergence of empirical barycenters in Alexandrov spaces and the Wasserstein space
Thibaut Le Gouic
Q. Paris
Philippe Rigollet
Austin J. Stromme
111
52
0
02 Aug 2019
Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training
Haichao Zhang
Jianyu Wang
AAML
112
231
0
24 Jul 2019
Optimal Transport-based Alignment of Learned Character Representations for String Similarity
Derek Tam
Nicholas Monath
Ari Kobren
Aaron Traylor
Rajarshi Das
Andrew McCallum
61
15
0
23 Jul 2019
Statistical data analysis in the Wasserstein space
Jérémie Bigot
69
32
0
19 Jul 2019
k-GANs: Ensemble of Generative Models with Semi-Discrete Optimal Transport
L. Ambrogioni
Umut Güçlü
Marcel van Gerven
GAN
28
4
0
09 Jul 2019
Adversarial Computation of Optimal Transport Maps
Jacob Leygonie
Jennifer She
Amjad Almahairi
Sai Rajeswar
Aaron Courville
GAN
OT
75
21
0
24 Jun 2019
GAIT: A Geometric Approach to Information Theory
Jose Gallego-Posada
Ankit Vani
Max Schwarzer
Simon Lacoste-Julien
69
8
0
19 Jun 2019
Minimum Stein Discrepancy Estimators
Alessandro Barp
François‐Xavier Briol
Andrew B. Duncan
Mark Girolami
Lester W. Mackey
82
93
0
19 Jun 2019
Local Bures-Wasserstein Transport: A Practical and Fast Mapping Approximation
Andrés Hoyos-Idrobo
OT
28
0
0
19 Jun 2019
Statistical Inference for Generative Models with Maximum Mean Discrepancy
François‐Xavier Briol
Alessandro Barp
Andrew B. Duncan
Mark Girolami
60
72
0
13 Jun 2019
Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance
Kimia Nadjahi
Alain Durmus
Umut Simsekli
Roland Badeau
MedIm
76
63
0
11 Jun 2019
Maximum Mean Discrepancy Gradient Flow
Michael Arbel
Anna Korba
Adil Salim
Arthur Gretton
132
164
0
11 Jun 2019
A gradual, semi-discrete approach to generative network training via explicit Wasserstein minimization
Yucheng Chen
Matus Telgarsky
Chao Zhang
Bolton Bailey
Daniel J. Hsu
Jian-wei Peng
GAN
OT
69
17
0
08 Jun 2019
GOT: An Optimal Transport framework for Graph comparison
Hermina Petric Maretic
Mireille El Gheche
Giovanni Chierchia
P. Frossard
OT
151
120
0
05 Jun 2019
Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm
Giulia Luise
Saverio Salzo
Massimiliano Pontil
C. Ciliberto
85
69
0
30 May 2019
Statistical bounds for entropic optimal transport: sample complexity and the central limit theorem
Gonzalo E. Mena
Jonathan Niles-Weed
OT
88
167
0
28 May 2019
Utility/Privacy Trade-off through the lens of Optimal Transport
Etienne Boursier
Vianney Perchet
59
8
0
27 May 2019
Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections
Boris Muzellec
Marco Cuturi
OT
85
31
0
24 May 2019
Geometric Losses for Distributional Learning
A. Mensch
Mathieu Blondel
Gabriel Peyré
143
16
0
15 May 2019
Minimax estimation of smooth optimal transport maps
Jan-Christian Hütter
Philippe Rigollet
OT
82
28
0
14 May 2019
Learning Generative Models across Incomparable Spaces
Charlotte Bunne
David Alvarez-Melis
Andreas Krause
Stefanie Jegelka
GAN
84
112
0
14 May 2019
Learning Embeddings into Entropic Wasserstein Spaces
Charlie Frogner
F. Mirzazadeh
Justin Solomon
74
32
0
08 May 2019
Sliced Wasserstein Generative Models
Jiqing Wu
Zhiwu Huang
Dinesh Acharya
Wen Li
Janine Thoma
D. Paudel
Luc Van Gool
DiffM
133
126
0
10 Apr 2019
Wasserstein Adversarial Regularization (WAR) on label noise
Kilian Fatras
B. Bushan
Sylvain Lobry
Rémi Flamary
D. Tuia
Nicolas Courty
81
25
0
08 Apr 2019
The Born Supremacy: Quantum Advantage and Training of an Ising Born Machine
Brian Coyle
Daniel Mills
V. Danos
E. Kashefi
106
158
0
03 Apr 2019
Feature Intertwiner for Object Detection
Hongyang Li
Bo Dai
Shaoshuai Shi
Wanli Ouyang
Xiaogang Wang
OOD
47
13
0
28 Mar 2019
Are Few-Shot Learning Benchmarks too Simple ? Solving them without Task Supervision at Test-Time
Gabriel Huang
Hugo Larochelle
Simon Lacoste-Julien
SSL
OOD
130
21
0
22 Feb 2019
Sinkhorn Divergence of Topological Signature Estimates for Time Series Classification
C. Stephen
22
0
0
14 Feb 2019
Wasserstein Barycenter Model Ensembling
Pierre Dognin
Igor Melnyk
Youssef Mroueh
Jerret Ross
Cicero Nogueira dos Santos
Tom Sercu
79
25
0
13 Feb 2019
(q,p)-Wasserstein GANs: Comparing Ground Metrics for Wasserstein GANs
Anton Mallasto
J. Frellsen
Wouter Boomsma
Aasa Feragen
60
15
0
10 Feb 2019
Minimax estimation of smooth densities in Wasserstein distance
Jonathan Niles-Weed
Quentin Berthet
OT
79
38
0
05 Feb 2019
AutoShuffleNet: Learning Permutation Matrices via an Exact Lipschitz Continuous Penalty in Deep Convolutional Neural Networks
J. Lyu
Shuai Zhang
Y. Qi
Jack Xin
73
27
0
24 Jan 2019
Improving Sequence-to-Sequence Learning via Optimal Transport
Liqun Chen
Yizhe Zhang
Ruiyi Zhang
Chenyang Tao
Zhe Gan
Haichao Zhang
Bai Li
Dinghan Shen
Changyou Chen
Lawrence Carin
OT
76
94
0
18 Jan 2019
Asymptotic distribution and convergence rates of stochastic algorithms for entropic optimal transportation between probability measures
Bernard Bercu
Jérémie Bigot
66
19
0
21 Dec 2018
Massively scalable Sinkhorn distances via the Nyström method
Jason M. Altschuler
Francis R. Bach
Alessandro Rudi
Jonathan Niles-Weed
70
111
0
12 Dec 2018
Stochastic Deep Networks
Gwendoline de Bie
Gabriel Peyré
Marco Cuturi
107
21
0
19 Nov 2018
Previous
1
2
3
4
5
6
7
8
Next