ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.00292
  4. Cited By
Learning Generative Models with Sinkhorn Divergences
v1v2v3 (latest)

Learning Generative Models with Sinkhorn Divergences

1 June 2017
Aude Genevay
Gabriel Peyré
Marco Cuturi
    OT
ArXiv (abs)PDFHTML

Papers citing "Learning Generative Models with Sinkhorn Divergences"

50 / 382 papers shown
Title
Zero-Shot Recognition via Optimal Transport
Zero-Shot Recognition via Optimal Transport
Wenlin Wang
Hongteng Xu
Guoyin Wang
Wenqi Wang
Lawrence Carin
OT
33
2
0
20 Oct 2019
Differentiable Deep Clustering with Cluster Size Constraints
Differentiable Deep Clustering with Cluster Size Constraints
Aude Genevay
Gabriel Dulac-Arnold
Jean-Philippe Vert
53
40
0
20 Oct 2019
Quantitative stability of optimal transport maps and linearization of
  the 2-Wasserstein space
Quantitative stability of optimal transport maps and linearization of the 2-Wasserstein space
Q. Mérigot
Alex Delalande
Frédéric Chazal
OT
55
44
0
14 Oct 2019
Prescribed Generative Adversarial Networks
Prescribed Generative Adversarial Networks
Adji Bousso Dieng
Francisco J. R. Ruiz
David M. Blei
Michalis K. Titsias
GANDRL
80
62
0
09 Oct 2019
Learning with minibatch Wasserstein : asymptotic and gradient properties
Learning with minibatch Wasserstein : asymptotic and gradient properties
Kilian Fatras
Younes Zine
Rémi Flamary
Rémi Gribonval
Nicolas Courty
OT
102
96
0
09 Oct 2019
How Well Do WGANs Estimate the Wasserstein Metric?
How Well Do WGANs Estimate the Wasserstein Metric?
Anton Mallasto
Guido Montúfar
Augusto Gerolin
53
26
0
09 Oct 2019
Spatio-Temporal Alignments: Optimal transport through space and time
Spatio-Temporal Alignments: Optimal transport through space and time
H. Janati
Marco Cuturi
Alexandre Gramfort
OTAI4TS
64
29
0
09 Oct 2019
A mathematical theory of cooperative communication
A mathematical theory of cooperative communication
Pei Wang
Junqi Wang
P. Paranamana
Patrick Shafto
79
49
0
07 Oct 2019
On the estimation of the Wasserstein distance in generative models
On the estimation of the Wasserstein distance in generative models
Thomas Pinetz
Daniel Soukup
Thomas Pock
GAN
75
9
0
02 Oct 2019
Learning transport cost from subset correspondence
Learning transport cost from subset correspondence
Ruishan Liu
Akshay Balsubramani
James Zou
OT
54
14
0
29 Sep 2019
UNITER: UNiversal Image-TExt Representation Learning
UNITER: UNiversal Image-TExt Representation Learning
Yen-Chun Chen
Linjie Li
Licheng Yu
Ahmed El Kholy
Faisal Ahmed
Zhe Gan
Yu Cheng
Jingjing Liu
VLMOT
134
449
0
25 Sep 2019
Enhancing Traffic Scene Predictions with Generative Adversarial Networks
Enhancing Traffic Scene Predictions with Generative Adversarial Networks
Peter König
Sandra Aigner
Marco Körner
32
3
0
24 Sep 2019
Estimation of Wasserstein distances in the Spiked Transport Model
Estimation of Wasserstein distances in the Spiked Transport Model
Jonathan Niles-Weed
Philippe Rigollet
87
103
0
16 Sep 2019
Wasserstein Distributionally Robust Optimization: Theory and
  Applications in Machine Learning
Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning
Daniel Kuhn
Peyman Mohajerin Esfahani
Viet Anh Nguyen
Soroosh Shafieezadeh-Abadeh
OOD
68
397
0
23 Aug 2019
Fast convergence of empirical barycenters in Alexandrov spaces and the
  Wasserstein space
Fast convergence of empirical barycenters in Alexandrov spaces and the Wasserstein space
Thibaut Le Gouic
Q. Paris
Philippe Rigollet
Austin J. Stromme
111
52
0
02 Aug 2019
Defense Against Adversarial Attacks Using Feature Scattering-based
  Adversarial Training
Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training
Haichao Zhang
Jianyu Wang
AAML
112
231
0
24 Jul 2019
Optimal Transport-based Alignment of Learned Character Representations
  for String Similarity
Optimal Transport-based Alignment of Learned Character Representations for String Similarity
Derek Tam
Nicholas Monath
Ari Kobren
Aaron Traylor
Rajarshi Das
Andrew McCallum
61
15
0
23 Jul 2019
Statistical data analysis in the Wasserstein space
Statistical data analysis in the Wasserstein space
Jérémie Bigot
69
32
0
19 Jul 2019
k-GANs: Ensemble of Generative Models with Semi-Discrete Optimal
  Transport
k-GANs: Ensemble of Generative Models with Semi-Discrete Optimal Transport
L. Ambrogioni
Umut Güçlü
Marcel van Gerven
GAN
28
4
0
09 Jul 2019
Adversarial Computation of Optimal Transport Maps
Adversarial Computation of Optimal Transport Maps
Jacob Leygonie
Jennifer She
Amjad Almahairi
Sai Rajeswar
Aaron Courville
GANOT
75
21
0
24 Jun 2019
GAIT: A Geometric Approach to Information Theory
GAIT: A Geometric Approach to Information Theory
Jose Gallego-Posada
Ankit Vani
Max Schwarzer
Simon Lacoste-Julien
69
8
0
19 Jun 2019
Minimum Stein Discrepancy Estimators
Minimum Stein Discrepancy Estimators
Alessandro Barp
François‐Xavier Briol
Andrew B. Duncan
Mark Girolami
Lester W. Mackey
82
93
0
19 Jun 2019
Local Bures-Wasserstein Transport: A Practical and Fast Mapping
  Approximation
Local Bures-Wasserstein Transport: A Practical and Fast Mapping Approximation
Andrés Hoyos-Idrobo
OT
28
0
0
19 Jun 2019
Statistical Inference for Generative Models with Maximum Mean
  Discrepancy
Statistical Inference for Generative Models with Maximum Mean Discrepancy
François‐Xavier Briol
Alessandro Barp
Andrew B. Duncan
Mark Girolami
60
72
0
13 Jun 2019
Asymptotic Guarantees for Learning Generative Models with the
  Sliced-Wasserstein Distance
Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance
Kimia Nadjahi
Alain Durmus
Umut Simsekli
Roland Badeau
MedIm
76
63
0
11 Jun 2019
Maximum Mean Discrepancy Gradient Flow
Maximum Mean Discrepancy Gradient Flow
Michael Arbel
Anna Korba
Adil Salim
Arthur Gretton
132
164
0
11 Jun 2019
A gradual, semi-discrete approach to generative network training via
  explicit Wasserstein minimization
A gradual, semi-discrete approach to generative network training via explicit Wasserstein minimization
Yucheng Chen
Matus Telgarsky
Chao Zhang
Bolton Bailey
Daniel J. Hsu
Jian-wei Peng
GANOT
69
17
0
08 Jun 2019
GOT: An Optimal Transport framework for Graph comparison
GOT: An Optimal Transport framework for Graph comparison
Hermina Petric Maretic
Mireille El Gheche
Giovanni Chierchia
P. Frossard
OT
151
120
0
05 Jun 2019
Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm
Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm
Giulia Luise
Saverio Salzo
Massimiliano Pontil
C. Ciliberto
85
69
0
30 May 2019
Statistical bounds for entropic optimal transport: sample complexity and
  the central limit theorem
Statistical bounds for entropic optimal transport: sample complexity and the central limit theorem
Gonzalo E. Mena
Jonathan Niles-Weed
OT
88
167
0
28 May 2019
Utility/Privacy Trade-off through the lens of Optimal Transport
Utility/Privacy Trade-off through the lens of Optimal Transport
Etienne Boursier
Vianney Perchet
59
8
0
27 May 2019
Subspace Detours: Building Transport Plans that are Optimal on Subspace
  Projections
Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections
Boris Muzellec
Marco Cuturi
OT
85
31
0
24 May 2019
Geometric Losses for Distributional Learning
Geometric Losses for Distributional Learning
A. Mensch
Mathieu Blondel
Gabriel Peyré
143
16
0
15 May 2019
Minimax estimation of smooth optimal transport maps
Minimax estimation of smooth optimal transport maps
Jan-Christian Hütter
Philippe Rigollet
OT
82
28
0
14 May 2019
Learning Generative Models across Incomparable Spaces
Learning Generative Models across Incomparable Spaces
Charlotte Bunne
David Alvarez-Melis
Andreas Krause
Stefanie Jegelka
GAN
84
112
0
14 May 2019
Learning Embeddings into Entropic Wasserstein Spaces
Learning Embeddings into Entropic Wasserstein Spaces
Charlie Frogner
F. Mirzazadeh
Justin Solomon
74
32
0
08 May 2019
Sliced Wasserstein Generative Models
Jiqing Wu
Zhiwu Huang
Dinesh Acharya
Wen Li
Janine Thoma
D. Paudel
Luc Van Gool
DiffM
133
126
0
10 Apr 2019
Wasserstein Adversarial Regularization (WAR) on label noise
Wasserstein Adversarial Regularization (WAR) on label noise
Kilian Fatras
B. Bushan
Sylvain Lobry
Rémi Flamary
D. Tuia
Nicolas Courty
81
25
0
08 Apr 2019
The Born Supremacy: Quantum Advantage and Training of an Ising Born
  Machine
The Born Supremacy: Quantum Advantage and Training of an Ising Born Machine
Brian Coyle
Daniel Mills
V. Danos
E. Kashefi
106
158
0
03 Apr 2019
Feature Intertwiner for Object Detection
Feature Intertwiner for Object Detection
Hongyang Li
Bo Dai
Shaoshuai Shi
Wanli Ouyang
Xiaogang Wang
OOD
47
13
0
28 Mar 2019
Are Few-Shot Learning Benchmarks too Simple ? Solving them without Task
  Supervision at Test-Time
Are Few-Shot Learning Benchmarks too Simple ? Solving them without Task Supervision at Test-Time
Gabriel Huang
Hugo Larochelle
Simon Lacoste-Julien
SSLOOD
130
21
0
22 Feb 2019
Sinkhorn Divergence of Topological Signature Estimates for Time Series
  Classification
Sinkhorn Divergence of Topological Signature Estimates for Time Series Classification
C. Stephen
22
0
0
14 Feb 2019
Wasserstein Barycenter Model Ensembling
Wasserstein Barycenter Model Ensembling
Pierre Dognin
Igor Melnyk
Youssef Mroueh
Jerret Ross
Cicero Nogueira dos Santos
Tom Sercu
79
25
0
13 Feb 2019
(q,p)-Wasserstein GANs: Comparing Ground Metrics for Wasserstein GANs
(q,p)-Wasserstein GANs: Comparing Ground Metrics for Wasserstein GANs
Anton Mallasto
J. Frellsen
Wouter Boomsma
Aasa Feragen
60
15
0
10 Feb 2019
Minimax estimation of smooth densities in Wasserstein distance
Minimax estimation of smooth densities in Wasserstein distance
Jonathan Niles-Weed
Quentin Berthet
OT
79
38
0
05 Feb 2019
AutoShuffleNet: Learning Permutation Matrices via an Exact Lipschitz
  Continuous Penalty in Deep Convolutional Neural Networks
AutoShuffleNet: Learning Permutation Matrices via an Exact Lipschitz Continuous Penalty in Deep Convolutional Neural Networks
J. Lyu
Shuai Zhang
Y. Qi
Jack Xin
73
27
0
24 Jan 2019
Improving Sequence-to-Sequence Learning via Optimal Transport
Improving Sequence-to-Sequence Learning via Optimal Transport
Liqun Chen
Yizhe Zhang
Ruiyi Zhang
Chenyang Tao
Zhe Gan
Haichao Zhang
Bai Li
Dinghan Shen
Changyou Chen
Lawrence Carin
OT
76
94
0
18 Jan 2019
Asymptotic distribution and convergence rates of stochastic algorithms
  for entropic optimal transportation between probability measures
Asymptotic distribution and convergence rates of stochastic algorithms for entropic optimal transportation between probability measures
Bernard Bercu
Jérémie Bigot
66
19
0
21 Dec 2018
Massively scalable Sinkhorn distances via the Nyström method
Massively scalable Sinkhorn distances via the Nyström method
Jason M. Altschuler
Francis R. Bach
Alessandro Rudi
Jonathan Niles-Weed
70
111
0
12 Dec 2018
Stochastic Deep Networks
Stochastic Deep Networks
Gwendoline de Bie
Gabriel Peyré
Marco Cuturi
107
21
0
19 Nov 2018
Previous
12345678
Next