ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.00292
  4. Cited By
Learning Generative Models with Sinkhorn Divergences
v1v2v3 (latest)

Learning Generative Models with Sinkhorn Divergences

1 June 2017
Aude Genevay
Gabriel Peyré
Marco Cuturi
    OT
ArXiv (abs)PDFHTML

Papers citing "Learning Generative Models with Sinkhorn Divergences"

50 / 382 papers shown
Title
Schrödinger Bridge Matching for Tree-Structured Costs and Entropic Wasserstein Barycentres
Schrödinger Bridge Matching for Tree-Structured Costs and Entropic Wasserstein Barycentres
Samuel Howard
Peter Potaptchik
George Deligiannidis
OT
32
0
0
20 Jun 2025
Investigating Mask-aware Prototype Learning for Tabular Anomaly Detection
Investigating Mask-aware Prototype Learning for Tabular Anomaly Detection
Ruiying Lu
Jinhan Liu
Chuan Du
D. Guo
OODAAML
66
0
0
03 Jun 2025
Differentiable Generalized Sliced Wasserstein Plans
Differentiable Generalized Sliced Wasserstein Plans
Laetitia Chapel
Romain Tavenard
Samuel Vaiter
OT
53
2
0
28 May 2025
The quest for the GRAph Level autoEncoder (GRALE)
The quest for the GRAph Level autoEncoder (GRALE)
Paul Krzakala
Gabriel Melo
Charlotte Laclau
Florence dÁlché-Buc
Rémi Flamary
50
0
0
28 May 2025
Faster Computation of Entropic Optimal Transport via Stable Low Frequency Modes
Faster Computation of Entropic Optimal Transport via Stable Low Frequency Modes
Reda Chhaibi
Serge Gratton
Samuel Vaiter
OT
33
0
0
23 May 2025
Distances for Markov chains from sample streams
Distances for Markov chains from sample streams
Sergio Calo
Anders Jonsson
Gergely Neu
Ludovic Schwartz
Javier Segovia-Aguas
45
1
0
23 May 2025
Generative Distribution Embeddings
Nic Fishman
Gokul Gowri
Peng Yin
Jonathan Gootenberg
Omar Abudayyeh
SyDa
966
0
0
23 May 2025
Joint stochastic localization and applications
Joint stochastic localization and applications
Tom Alberts
Yiming Xu
Qiang Ye
51
0
0
19 May 2025
Flow Matching Ergodic Coverage
Flow Matching Ergodic Coverage
Max Muchen Sun
Allison Pinosky
Todd Murphey
80
0
0
24 Apr 2025
Resonances in reflective Hamiltonian Monte Carlo
Resonances in reflective Hamiltonian Monte Carlo
Namu Kroupa
Gábor Csányi
Will Handley
141
0
0
16 Apr 2025
Towards generalizable single-cell perturbation modeling via the Conditional Monge Gap
Towards generalizable single-cell perturbation modeling via the Conditional Monge Gap
Alice Driessen
Benedek Harsanyi
Marianna Rapsomaniki
Jannis Born
AI4CE
90
1
0
11 Apr 2025
A Truncated Newton Method for Optimal Transport
A Truncated Newton Method for Optimal Transport
Mete Kemertas
Amir-massoud Farahmand
Allan D. Jepson
OT
79
1
0
02 Apr 2025
Nested Stochastic Algorithm for Generalized Sinkhorn distance-Regularized Distributionally Robust Optimization
Nested Stochastic Algorithm for Generalized Sinkhorn distance-Regularized Distributionally Robust Optimization
Yue Yang
Yi Zhou
Zhaosong Lu
120
0
0
29 Mar 2025
Properties of Wasserstein Gradient Flows for the Sliced-Wasserstein Distance
Properties of Wasserstein Gradient Flows for the Sliced-Wasserstein Distance
Christophe Vauthier
Quentin Mérigot
Anna Korba
69
0
0
10 Feb 2025
Fused Gromov-Wasserstein Variance Decomposition with Linear Optimal
  Transport
Fused Gromov-Wasserstein Variance Decomposition with Linear Optimal Transport
Michael Wilson
Tom Needham
A. Srivastava
OT
73
0
0
15 Nov 2024
Implicit Dynamical Flow Fusion (IDFF) for Generative Modeling
Implicit Dynamical Flow Fusion (IDFF) for Generative Modeling
Mohammad R. Rezaei
Rahul G. Krishnan
Milos R. Popovic
M. Lankarany
DiffM
124
0
0
22 Sep 2024
A Sinkhorn Regularized Adversarial Network for Image Guided DEM
  Super-resolution using Frequency Selective Hybrid Graph Transformer
A Sinkhorn Regularized Adversarial Network for Image Guided DEM Super-resolution using Frequency Selective Hybrid Graph Transformer
Subhajit Paul
Ashutosh Gupta
52
0
0
21 Sep 2024
Multimodal Prototyping for cancer survival prediction
Multimodal Prototyping for cancer survival prediction
Andrew H. Song
Richard J. Chen
Guillaume Jaume
Anurag J. Vaidya
Alexander S. Baras
Faisal Mahmood
95
17
0
28 Jun 2024
Estimating Long-term Heterogeneous Dose-response Curve: Generalization Bound Leveraging Optimal Transport Weights
Estimating Long-term Heterogeneous Dose-response Curve: Generalization Bound Leveraging Optimal Transport Weights
Zeqin Yang
Weilin Chen
Ruichu Cai
Yuguang Yan
Zhifeng Hao
Zhipeng Yu
Zhichao Zou
Jixing Xu
Zhen Peng
Jiecheng Guo
139
3
0
27 Jun 2024
Repeat and Concatenate: 2D to 3D Image Translation with 3D to 3D
  Generative Modeling
Repeat and Concatenate: 2D to 3D Image Translation with 3D to 3D Generative Modeling
Abril Corona-Figueroa
Hubert P. H. Shum
Chris G. Willcocks
82
0
0
26 Jun 2024
Differentiable Cost-Parameterized Monge Map Estimators
Differentiable Cost-Parameterized Monge Map Estimators
Samuel Howard
George Deligiannidis
Patrick Rebeschini
James Thornton
OT
99
1
0
12 Jun 2024
Progressive Entropic Optimal Transport Solvers
Progressive Entropic Optimal Transport Solvers
Parnian Kassraie
Aram-Alexandre Pooladian
Michal Klein
James Thornton
Jonathan Niles-Weed
Marco Cuturi
OT
97
6
0
07 Jun 2024
SAVA: Scalable Learning-Agnostic Data Valuation
SAVA: Scalable Learning-Agnostic Data Valuation
Samuel Kessler
Tam Le
Vu Nguyen
TDI
205
0
0
03 Jun 2024
On the Convergence of the Sinkhorn-Knopp Algorithm with Sparse Cost
  Matrices
On the Convergence of the Sinkhorn-Knopp Algorithm with Sparse Cost Matrices
Jose Rafael Espinosa Mena
48
0
0
30 May 2024
FASTopic: A Fast, Adaptive, Stable, and Transferable Topic Modeling
  Paradigm
FASTopic: A Fast, Adaptive, Stable, and Transferable Topic Modeling Paradigm
Xiaobao Wu
Thong Nguyen
Delvin Ce Zhang
William Yang Wang
Anh Tuan Luu
126
17
0
28 May 2024
Diffusion Bridge AutoEncoders for Unsupervised Representation Learning
Diffusion Bridge AutoEncoders for Unsupervised Representation Learning
Yeongmin Kim
Kwanghyeon Lee
Minsang Park
Byeonghu Na
Il-Chul Moon
DiffM
138
2
0
27 May 2024
Statistical and Computational Guarantees of Kernel Max-Sliced Wasserstein Distances
Statistical and Computational Guarantees of Kernel Max-Sliced Wasserstein Distances
Jie Wang
M. Boedihardjo
Yao Xie
127
1
0
24 May 2024
Fisher Flow Matching for Generative Modeling over Discrete Data
Fisher Flow Matching for Generative Modeling over Discrete Data
Oscar Davis
Samuel Kessler
Mircea Petrache
.Ismail .Ilkan Ceylan
Michael M. Bronstein
A. Bose
111
21
0
23 May 2024
Semi-Discrete Optimal Transport: Nearly Minimax Estimation With
  Stochastic Gradient Descent and Adaptive Entropic Regularization
Semi-Discrete Optimal Transport: Nearly Minimax Estimation With Stochastic Gradient Descent and Adaptive Entropic Regularization
Ferdinand Genans
Antoine Godichon-Baggioni
Franccois-Xavier Vialard
Olivier Wintenberger
68
0
0
23 May 2024
Stochastic Learning of Computational Resource Usage as Graph Structured Multimarginal Schrödinger Bridge
Stochastic Learning of Computational Resource Usage as Graph Structured Multimarginal Schrödinger Bridge
Georgiy A. Bondar
Robert Gifford
Linh Thi Xuan Phan
Abhishek Halder
93
0
0
21 May 2024
Revisiting Deep Audio-Text Retrieval Through the Lens of Transportation
Revisiting Deep Audio-Text Retrieval Through the Lens of Transportation
Manh Luong
Khai Nguyen
Nhat Ho
Reza Haf
D.Q. Phung
Lizhen Qu
75
13
0
16 May 2024
Deep MMD Gradient Flow without adversarial training
Deep MMD Gradient Flow without adversarial training
Alexandre Galashov
Valentin De Bortoli
Arthur Gretton
DiffM
79
9
0
10 May 2024
A New Robust Partial $p$-Wasserstein-Based Metric for Comparing
  Distributions
A New Robust Partial ppp-Wasserstein-Based Metric for Comparing Distributions
S. Raghvendra
Pouyan Shirzadian
Kaiyi Zhang
81
3
0
06 May 2024
Get more for less: Principled Data Selection for Warming Up Fine-Tuning
  in LLMs
Get more for less: Principled Data Selection for Warming Up Fine-Tuning in LLMs
Feiyang Kang
H. Just
Yifan Sun
Himanshu Jahagirdar
Yuanzhi Zhang
Rongxing Du
Anit Kumar Sahu
Ruoxi Jia
102
22
0
05 May 2024
Wasserstein Wormhole: Scalable Optimal Transport Distance with
  Transformers
Wasserstein Wormhole: Scalable Optimal Transport Distance with Transformers
Doron Haviv
Russell Z. Kunes
Thomas Dougherty
Cassandra Burdziak
T. Nawy
Anna Gilbert
Dana Peér
OT
124
7
0
15 Apr 2024
Gaussian-Smoothed Sliced Probability Divergences
Gaussian-Smoothed Sliced Probability Divergences
Mokhtar Z. Alaya
A. Rakotomamonjy
Maxime Bérar
Gilles Gasso
71
0
0
04 Apr 2024
Propensity Score Alignment of Unpaired Multimodal Data
Propensity Score Alignment of Unpaired Multimodal Data
Johnny Xi
Jason S. Hartford
66
5
0
02 Apr 2024
Conditional Wasserstein Distances with Applications in Bayesian OT Flow
  Matching
Conditional Wasserstein Distances with Applications in Bayesian OT Flow Matching
Jannis Chemseddine
Paul Hagemann
Gabriele Steidl
Christian Wald
114
12
0
27 Mar 2024
A Sinkhorn-type Algorithm for Constrained Optimal Transport
A Sinkhorn-type Algorithm for Constrained Optimal Transport
Xun Tang
Holakou Rahmanian
Michael Shavlovsky
K. K. Thekumparampil
Tesi Xiao
Lexing Ying
66
1
0
08 Mar 2024
On a Neural Implementation of Brenier's Polar Factorization
On a Neural Implementation of Brenier's Polar Factorization
Nina Vesseron
Marco Cuturi
119
2
0
05 Mar 2024
Sinkhorn Distance Minimization for Knowledge Distillation
Sinkhorn Distance Minimization for Knowledge Distillation
Xiao Cui
Yulei Qin
Yuting Gao
Enwei Zhang
Zihan Xu
Tong Wu
Ke Li
Xing Sun
Wen-gang Zhou
Houqiang Li
84
8
0
27 Feb 2024
DySLIM: Dynamics Stable Learning by Invariant Measure for Chaotic
  Systems
DySLIM: Dynamics Stable Learning by Invariant Measure for Chaotic Systems
Yair Schiff
Zhong Yi Wan
Jeffrey B. Parker
Stephan Hoyer
Volodymyr Kuleshov
Fei Sha
Leonardo Zepeda-Núñez
142
15
0
06 Feb 2024
On the Affinity, Rationality, and Diversity of Hierarchical Topic
  Modeling
On the Affinity, Rationality, and Diversity of Hierarchical Topic Modeling
Xiaobao Wu
Fengjun Pan
Thong Nguyen
Yichao Feng
Chaoqun Liu
Cong-Duy Nguyen
Anh Tuan Luu
113
25
0
25 Jan 2024
Neural Sinkhorn Gradient Flow
Neural Sinkhorn Gradient Flow
Huminhao Zhu
Fangyikang Wang
Chao Zhang
Han Zhao
Hui Qian
74
8
0
25 Jan 2024
Spectral Clustering for Discrete Distributions
Spectral Clustering for Discrete Distributions
Zixiao Wang
Dong Qiao
Jicong Fan
62
0
0
25 Jan 2024
Accelerating Sinkhorn Algorithm with Sparse Newton Iterations
Accelerating Sinkhorn Algorithm with Sparse Newton Iterations
Xun Tang
Michael Shavlovsky
Holakou Rahmanian
Elisa Tardini
K. K. Thekumparampil
Tesi Xiao
Lexing Ying
OT
61
5
0
20 Jan 2024
Learning from small data sets: Patch-based regularizers in inverse
  problems for image reconstruction
Learning from small data sets: Patch-based regularizers in inverse problems for image reconstruction
Moritz Piening
Fabian Altekrüger
J. Hertrich
Paul Hagemann
Andrea Walther
Gabriele Steidl
68
6
0
27 Dec 2023
PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation
PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation
S. Chatterjee
Franziska Gaidzik
Alessandro Sciarra
Hendrik Mattern
G. Janiga
Oliver Speck
Andreas Nürnberger
S. Pathiraja
80
0
0
25 Dec 2023
Differentially Private Gradient Flow based on the Sliced Wasserstein Distance
Differentially Private Gradient Flow based on the Sliced Wasserstein Distance
Ilana Sebag
Muni Sreenivas Pydi
Jean-Yves Franceschi
Alain Rakotomamonjy
Mike Gartrell
Jamal Atif
Alexandre Allauzen
109
3
0
13 Dec 2023
DeepEMD: A Transformer-based Fast Estimation of the Earth Mover's
  Distance
DeepEMD: A Transformer-based Fast Estimation of the Earth Mover's Distance
A. Sinha
François Fleuret
70
4
0
16 Nov 2023
12345678
Next