ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.00292
  4. Cited By
Learning Generative Models with Sinkhorn Divergences
v1v2v3 (latest)

Learning Generative Models with Sinkhorn Divergences

1 June 2017
Aude Genevay
Gabriel Peyré
Marco Cuturi
    OT
ArXiv (abs)PDFHTML

Papers citing "Learning Generative Models with Sinkhorn Divergences"

50 / 382 papers shown
Title
Domain Adaptation for Time Series Under Feature and Label Shifts
Domain Adaptation for Time Series Under Feature and Label Shifts
Huan He
Owen Queen
Teddy Koker
Consuelo Cuevas
Theodoros Tsiligkaridis
Marinka Zitnik
AI4TS
112
72
0
06 Feb 2023
Improving and generalizing flow-based generative models with minibatch
  optimal transport
Improving and generalizing flow-based generative models with minibatch optimal transport
Alexander Tong
Kilian Fatras
Nikolay Malkin
G. Huguet
Yanlei Zhang
Jarrid Rector-Brooks
Guy Wolf
Yoshua Bengio
OODDiffMOT
144
308
0
01 Feb 2023
Self-Consistent Velocity Matching of Probability Flows
Self-Consistent Velocity Matching of Probability Flows
Lingxiao Li
Samuel Hurault
Justin Solomon
108
15
0
31 Jan 2023
Extremal Domain Translation with Neural Optimal Transport
Extremal Domain Translation with Neural Optimal Transport
Milena Gazdieva
Alexander Korotin
Daniil Selikhanovych
Evgeny Burnaev
OT
78
12
0
30 Jan 2023
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for
  Likelihood-Free Inference
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference
Ayush Bharti
Masha Naslidnyk
Oscar Key
Samuel Kaski
F. Briol
131
15
0
27 Jan 2023
Minimax estimation of discontinuous optimal transport maps: The
  semi-discrete case
Minimax estimation of discontinuous optimal transport maps: The semi-discrete case
Aram-Alexandre Pooladian
Vincent Divol
Jonathan Niles-Weed
OT
79
21
0
26 Jan 2023
Self-Attention Amortized Distributional Projection Optimization for
  Sliced Wasserstein Point-Cloud Reconstruction
Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction
Khai Nguyen
Dang Nguyen
N. Ho
80
9
0
12 Jan 2023
Markovian Sliced Wasserstein Distances: Beyond Independent Projections
Markovian Sliced Wasserstein Distances: Beyond Independent Projections
Khai Nguyen
Zhaolin Ren
Nhat Ho
82
8
0
10 Jan 2023
Optimal transport map estimation in general function spaces
Optimal transport map estimation in general function spaces
Vincent Divol
Jonathan Niles-Weed
Aram-Alexandre Pooladian
OT
94
24
0
07 Dec 2022
Estimating Regression Predictive Distributions with Sample Networks
Estimating Regression Predictive Distributions with Sample Networks
Ali Harakeh
Jordan S. K. Hu
Naiqing Guan
Steven L. Waslander
Liam Paull
BDLUQCV
46
4
0
24 Nov 2022
Mirror Sinkhorn: Fast Online Optimization on Transport Polytopes
Mirror Sinkhorn: Fast Online Optimization on Transport Polytopes
Marin Ballu
Quentin Berthet
114
8
0
18 Nov 2022
Unbalanced Optimal Transport, from Theory to Numerics
Unbalanced Optimal Transport, from Theory to Numerics
Thibault Séjourné
Gabriel Peyré
Franccois-Xavier Vialard
OT
104
49
0
16 Nov 2022
Lipschitz-regularized gradient flows and generative particle algorithms
  for high-dimensional scarce data
Lipschitz-regularized gradient flows and generative particle algorithms for high-dimensional scarce data
Hyemin Gu
Panagiota Birmpa
Yannis Pantazis
Luc Rey-Bellet
Markos A. Katsoulakis
103
2
0
31 Oct 2022
Minimum Kernel Discrepancy Estimators
Minimum Kernel Discrepancy Estimators
Chris J. Oates
73
10
0
28 Oct 2022
Budget-Constrained Bounds for Mini-Batch Estimation of Optimal Transport
Budget-Constrained Bounds for Mini-Batch Estimation of Optimal Transport
David Alvarez-Melis
Nicolò Fusi
Lester W. Mackey
Tal Wagner
OT
103
1
0
24 Oct 2022
Partial Identification of Treatment Effects with Implicit Generative
  Models
Partial Identification of Treatment Effects with Implicit Generative Models
Vahid Balazadeh Meresht
Vasilis Syrgkanis
Rahul G. Krishnan
CML
80
19
0
14 Oct 2022
On the potential benefits of entropic regularization for smoothing
  Wasserstein estimators
On the potential benefits of entropic regularization for smoothing Wasserstein estimators
Jérémie Bigot
Paul Freulon
B. Hejblum
Arthur Leclaire
OT
64
2
0
13 Oct 2022
Gaussian Processes on Distributions based on Regularized Optimal
  Transport
Gaussian Processes on Distributions based on Regularized Optimal Transport
François Bachoc
Louis Bethune
Alberto González Sanz
Jean-Michel Loubes
GPOT
66
8
0
12 Oct 2022
VoLTA: Vision-Language Transformer with Weakly-Supervised Local-Feature
  Alignment
VoLTA: Vision-Language Transformer with Weakly-Supervised Local-Feature Alignment
Shraman Pramanick
Li Jing
Sayan Nag
Jiachen Zhu
Hardik Shah
Yann LeCun
Ramalingam Chellappa
82
22
0
09 Oct 2022
Improving Generative Flow Networks with Path Regularization
Improving Generative Flow Networks with Path Regularization
A. Do
Duy-Tung Dinh
T. Nguyen
Khuong N. Nguyen
Stanley Osher
Nhat Ho
AI4CE
72
4
0
29 Sep 2022
Hierarchical Sliced Wasserstein Distance
Hierarchical Sliced Wasserstein Distance
Khai Nguyen
Zhaolin Ren
Huy Nguyen
Litu Rout
T. Nguyen
Nhat Ho
89
22
0
27 Sep 2022
Wasserstein $K$-means for clustering probability distributions
Wasserstein KKK-means for clustering probability distributions
Yubo Zhuang
Xiaohui Chen
Yun Yang
88
25
0
14 Sep 2022
Learning Deep Optimal Embeddings with Sinkhorn Divergences
Learning Deep Optimal Embeddings with Sinkhorn Divergences
S. Roy
Yan Han
Mehrtash Harandi
L. Petersson
72
0
0
14 Sep 2022
Meta-Learning with Less Forgetting on Large-Scale Non-Stationary Task
  Distributions
Meta-Learning with Less Forgetting on Large-Scale Non-Stationary Task Distributions
Zhenyi Wang
Li Shen
Le Fang
Qiuling Suo
Dongling Zhan
Tiehang Duan
Mingchen Gao
OODCLL
66
16
0
03 Sep 2022
Discovering Conservation Laws using Optimal Transport and Manifold
  Learning
Discovering Conservation Laws using Optimal Transport and Manifold Learning
Peter Y. Lu
Rumen Dangovski
M. Soljavcić
82
18
0
31 Aug 2022
Multiview Regenerative Morphing with Dual Flows
Multiview Regenerative Morphing with Dual Flows
Chih-Jung Tsai
Cheng Sun
Hwann-Tzong Chen
3DH
55
1
0
02 Aug 2022
The derivatives of Sinkhorn-Knopp converge
The derivatives of Sinkhorn-Knopp converge
Edouard Pauwels
Samuel Vaiter
79
6
0
26 Jul 2022
Weak limits of entropy regularized Optimal Transport; potentials, plans
  and divergences
Weak limits of entropy regularized Optimal Transport; potentials, plans and divergences
Alberto González Sanz
Jean-Michel Loubes
Jonathan Niles-Weed
OT
50
23
0
15 Jul 2022
Transferability-Guided Cross-Domain Cross-Task Transfer Learning
Transferability-Guided Cross-Domain Cross-Task Transfer Learning
Yang Tan
Enming Zhang
Yang Li
Shao-Lun Huang
Xiaoping Zhang
OT
118
12
0
12 Jul 2022
Multisymplectic Formulation of Deep Learning Using Mean--Field Type
  Control and Nonlinear Stability of Training Algorithm
Multisymplectic Formulation of Deep Learning Using Mean--Field Type Control and Nonlinear Stability of Training Algorithm
Nader Ganaba
63
0
0
07 Jul 2022
Diffeomorphic Registration using Sinkhorn Divergences
Diffeomorphic Registration using Sinkhorn Divergences
Lucas de Lara
Alberto González Sanz
Jean-Michel Loubes
FedML
80
9
0
28 Jun 2022
On Certifying and Improving Generalization to Unseen Domains
On Certifying and Improving Generalization to Unseen Domains
Akshay Mehra
B. Kailkhura
Pin-Yu Chen
Jihun Hamm
OOD
106
4
0
24 Jun 2022
Approximating 1-Wasserstein Distance with Trees
Approximating 1-Wasserstein Distance with Trees
M. Yamada
Yuki Takezawa
Ryoma Sato
Hang Bao
Zornitsa Kozareva
Sujith Ravi
121
9
0
24 Jun 2022
On making optimal transport robust to all outliers
On making optimal transport robust to all outliers
Kilian Fatras
OT
60
0
0
23 Jun 2022
Optimal transport meets noisy label robust loss and MixUp regularization
  for domain adaptation
Optimal transport meets noisy label robust loss and MixUp regularization for domain adaptation
Kilian Fatras
Hiroki Naganuma
Ioannis Mitliagkas
OOD
49
6
0
22 Jun 2022
Rethinking Initialization of the Sinkhorn Algorithm
Rethinking Initialization of the Sinkhorn Algorithm
James Thornton
Marco Cuturi
OT
90
12
0
15 Jun 2022
Loss Functions for Classification using Structured Entropy
Loss Functions for Classification using Structured Entropy
B. Lucena
40
3
0
14 Jun 2022
Asymptotics of smoothed Wasserstein distances in the small noise regime
Asymptotics of smoothed Wasserstein distances in the small noise regime
Yunzi Ding
Jonathan Niles-Weed
OT
71
2
0
13 Jun 2022
Meta Optimal Transport
Meta Optimal Transport
Brandon Amos
Samuel N. Cohen
Giulia Luise
I. Redko
OT
109
24
0
10 Jun 2022
Causality Learning With Wasserstein Generative Adversarial Networks
Causality Learning With Wasserstein Generative Adversarial Networks
H. Petkov
Colin Hanley
Feng Dong
CMLGANOOD
27
0
0
03 Jun 2022
Distributional Convergence of the Sliced Wasserstein Process
Distributional Convergence of the Sliced Wasserstein Process
Jiaqi Xi
Jonathan Niles-Weed
57
7
0
01 Jun 2022
Hilbert Curve Projection Distance for Distribution Comparison
Hilbert Curve Projection Distance for Distribution Comparison
Tao Li
Cheng Meng
Hongteng Xu
Jun Yu
106
14
0
30 May 2022
Low-rank Optimal Transport: Approximation, Statistics and Debiasing
Low-rank Optimal Transport: Approximation, Statistics and Debiasing
M. Scetbon
Marco Cuturi
OT
86
16
0
24 May 2022
Time-series Transformer Generative Adversarial Networks
Time-series Transformer Generative Adversarial Networks
Padmanaba Srinivasan
William J. Knottenbelt
AI4TS
75
14
0
23 May 2022
A Unified Framework for Implicit Sinkhorn Differentiation
A Unified Framework for Implicit Sinkhorn Differentiation
Marvin Eisenberger
Aysim Toker
Laura Leal-Taixé
Florian Bernard
Zorah Lähner
AI4CE
100
24
0
13 May 2022
Domain Adaptation meets Individual Fairness. And they get along
Domain Adaptation meets Individual Fairness. And they get along
Debarghya Mukherjee
Felix Petersen
Mikhail Yurochkin
Yuekai Sun
FaML
82
16
0
01 May 2022
An improved central limit theorem and fast convergence rates for
  entropic transportation costs
An improved central limit theorem and fast convergence rates for entropic transportation costs
E. del Barrio
Alberto González Sanz
Jean-Michel Loubes
Jonathan Niles-Weed
OT
71
36
0
19 Apr 2022
Hierarchical Optimal Transport for Comparing Histopathology Datasets
Hierarchical Optimal Transport for Comparing Histopathology Datasets
A. Yeaton
Rahul G. Krishnan
Rebecca J. Mieloszyk
David Alvarez-Melis
G. Huynh
OT
77
9
0
18 Apr 2022
Neural Estimation of the Rate-Distortion Function With Applications to
  Operational Source Coding
Neural Estimation of the Rate-Distortion Function With Applications to Operational Source Coding
Eric Lei
Hamed Hassani
Shirin Saeedi Bidokhti
67
20
0
04 Apr 2022
DAG-WGAN: Causal Structure Learning With Wasserstein Generative
  Adversarial Networks
DAG-WGAN: Causal Structure Learning With Wasserstein Generative Adversarial Networks
H. Petkov
Colin Hanley
Feng Dong
GANOODCML
67
6
0
01 Apr 2022
Previous
12345678
Next