Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.07204
Cited By
Ensemble Adversarial Training: Attacks and Defenses
19 May 2017
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Ensemble Adversarial Training: Attacks and Defenses"
50 / 1,340 papers shown
Title
Regional Homogeneity: Towards Learning Transferable Universal Adversarial Perturbations Against Defenses
Yingwei Li
S. Bai
Cihang Xie
Zhenyu A. Liao
Xiaohui Shen
Alan Yuille
AAML
47
50
0
01 Apr 2019
Adversarial Defense by Restricting the Hidden Space of Deep Neural Networks
Aamir Mustafa
Salman Khan
Munawar Hayat
Roland Göcke
Jianbing Shen
Ling Shao
AAML
17
151
0
01 Apr 2019
Variational Adversarial Active Learning
Samarth Sinha
Sayna Ebrahimi
Trevor Darrell
GAN
DRL
VLM
SSL
39
571
0
31 Mar 2019
On the Vulnerability of CNN Classifiers in EEG-Based BCIs
Xiao Zhang
Dongrui Wu
AAML
24
82
0
31 Mar 2019
A Provable Defense for Deep Residual Networks
M. Mirman
Gagandeep Singh
Martin Vechev
19
26
0
29 Mar 2019
Defending against Whitebox Adversarial Attacks via Randomized Discretization
Yuchen Zhang
Percy Liang
AAML
32
75
0
25 Mar 2019
Exploiting Excessive Invariance caused by Norm-Bounded Adversarial Robustness
J. Jacobsen
Jens Behrmann
Nicholas Carlini
Florian Tramèr
Nicolas Papernot
AAML
24
46
0
25 Mar 2019
Variational Inference with Latent Space Quantization for Adversarial Resilience
Vinay Kyatham
P. PrathoshA.
Tarun Kumar Yadav
Deepak Mishra
Dheeraj Mundhra
AAML
19
3
0
24 Mar 2019
Scalable Differential Privacy with Certified Robustness in Adversarial Learning
Nhathai Phan
My T. Thai
Han Hu
R. Jin
Tong Sun
Dejing Dou
32
14
0
23 Mar 2019
Improving Adversarial Robustness via Guided Complement Entropy
Hao-Yun Chen
Jhao-Hong Liang
Shih-Chieh Chang
Jia Pan
Yu-Ting Chen
Wei Wei
Da-Cheng Juan
AAML
6
47
0
23 Mar 2019
Provable Certificates for Adversarial Examples: Fitting a Ball in the Union of Polytopes
Matt Jordan
Justin Lewis
A. Dimakis
AAML
24
57
0
20 Mar 2019
Attribution-driven Causal Analysis for Detection of Adversarial Examples
Susmit Jha
Sunny Raj
S. Fernandes
Sumit Kumar Jha
S. Jha
Gunjan Verma
B. Jalaeian
A. Swami
AAML
16
17
0
14 Mar 2019
GanDef: A GAN based Adversarial Training Defense for Neural Network Classifier
Guanxiong Liu
Issa M. Khalil
Abdallah Khreishah
GAN
AAML
33
19
0
06 Mar 2019
Detecting Overfitting via Adversarial Examples
Roman Werpachowski
András Gyorgy
Csaba Szepesvári
TDI
26
45
0
06 Mar 2019
Defense Against Adversarial Images using Web-Scale Nearest-Neighbor Search
Abhimanyu Dubey
Laurens van der Maaten
Zeki Yalniz
Yixuan Li
D. Mahajan
AAML
33
62
0
05 Mar 2019
A Kernelized Manifold Mapping to Diminish the Effect of Adversarial Perturbations
Saeid Asgari Taghanaki
Kumar Abhishek
Shekoofeh Azizi
Ghassan Hamarneh
AAML
31
40
0
03 Mar 2019
PuVAE: A Variational Autoencoder to Purify Adversarial Examples
Uiwon Hwang
Jaewoo Park
Hyemi Jang
Sungroh Yoon
N. Cho
AAML
15
76
0
02 Mar 2019
Aggregating explanation methods for stable and robust explainability
Laura Rieger
Lars Kai Hansen
AAML
FAtt
37
11
0
01 Mar 2019
Evaluating Adversarial Evasion Attacks in the Context of Wireless Communications
Bryse Flowers
R. M. Buehrer
William C. Headley
AAML
32
123
0
01 Mar 2019
On the Effectiveness of Low Frequency Perturbations
Yash Sharma
G. Ding
Marcus A. Brubaker
AAML
38
121
0
28 Feb 2019
Enhancing the Robustness of Deep Neural Networks by Boundary Conditional GAN
Ke Sun
Zhanxing Zhu
Zhouchen Lin
AAML
19
20
0
28 Feb 2019
Towards Understanding Adversarial Examples Systematically: Exploring Data Size, Task and Model Factors
Ke Sun
Zhanxing Zhu
Zhouchen Lin
AAML
30
18
0
28 Feb 2019
Adversarial Attack and Defense on Point Sets
Jiancheng Yang
Qiang Zhang
Rongyao Fang
Bingbing Ni
Jinxian Liu
Qi Tian
3DPC
24
122
0
28 Feb 2019
Adversarial Attacks on Time Series
Fazle Karim
Somshubra Majumdar
H. Darabi
AI4TS
23
96
0
27 Feb 2019
Visualization, Discriminability and Applications of Interpretable Saak Features
Abinaya Manimaran
T. Ramanathan
Suya You
C.-C. Jay Kuo
FAtt
18
8
0
25 Feb 2019
Adversarial Reinforcement Learning under Partial Observability in Autonomous Computer Network Defence
Yi Han
David Hubczenko
Paul Montague
O. Vel
Tamas Abraham
Benjamin I. P. Rubinstein
C. Leckie
T. Alpcan
S. Erfani
AAML
16
6
0
25 Feb 2019
Graph Adversarial Training: Dynamically Regularizing Based on Graph Structure
Fuli Feng
Xiangnan He
Jie Tang
Tat-Seng Chua
OOD
AAML
34
219
0
20 Feb 2019
There are No Bit Parts for Sign Bits in Black-Box Attacks
Abdullah Al-Dujaili
Una-May O’Reilly
AAML
21
20
0
19 Feb 2019
On Evaluating Adversarial Robustness
Nicholas Carlini
Anish Athalye
Nicolas Papernot
Wieland Brendel
Jonas Rauber
Dimitris Tsipras
Ian Goodfellow
A. Madry
Alexey Kurakin
ELM
AAML
37
892
0
18 Feb 2019
Mockingbird: Defending Against Deep-Learning-Based Website Fingerprinting Attacks with Adversarial Traces
Mohammad Saidur Rahman
Mohsen Imani
Nate Mathews
M. Wright
AAML
14
80
0
18 Feb 2019
AuxBlocks: Defense Adversarial Example via Auxiliary Blocks
Yueyao Yu
Pengfei Yu
Wenye Li
AAML
14
6
0
18 Feb 2019
DeepFault: Fault Localization for Deep Neural Networks
Hasan Ferit Eniser
Simos Gerasimou
A. Sen
AAML
20
87
0
15 Feb 2019
Towards a Robust Deep Neural Network in Texts: A Survey
Wenqi Wang
Benxiao Tang
Run Wang
Lina Wang
Aoshuang Ye
AAML
26
39
0
12 Feb 2019
Model Compression with Adversarial Robustness: A Unified Optimization Framework
Shupeng Gui
Haotao Wang
Chen Yu
Haichuan Yang
Zhangyang Wang
Ji Liu
MQ
13
137
0
10 Feb 2019
Minimal Images in Deep Neural Networks: Fragile Object Recognition in Natural Images
S. Srivastava
Guy Ben-Yosef
Xavier Boix
AAML
25
27
0
08 Feb 2019
Discretization based Solutions for Secure Machine Learning against Adversarial Attacks
Priyadarshini Panda
I. Chakraborty
Kaushik Roy
AAML
19
40
0
08 Feb 2019
Understanding the One-Pixel Attack: Propagation Maps and Locality Analysis
Danilo Vasconcellos Vargas
Jiawei Su
FAtt
AAML
11
36
0
08 Feb 2019
Daedalus: Breaking Non-Maximum Suppression in Object Detection via Adversarial Examples
Derui Wang
Chaoran Li
S. Wen
Qing-Long Han
Surya Nepal
Xiangyu Zhang
Yang Xiang
AAML
30
40
0
06 Feb 2019
The Efficacy of SHIELD under Different Threat Models
Cory Cornelius
Nilaksh Das
Shang-Tse Chen
Li Chen
Michael E. Kounavis
Duen Horng Chau
AAML
13
11
0
01 Feb 2019
A New Family of Neural Networks Provably Resistant to Adversarial Attacks
Rakshit Agrawal
Luca de Alfaro
D. Helmbold
AAML
OOD
27
2
0
01 Feb 2019
Augmenting Model Robustness with Transformation-Invariant Attacks
Houpu Yao
Zhe Wang
Guangyu Nie
Yassine Mazboudi
Yezhou Yang
Yi Ren
AAML
OOD
8
3
0
31 Jan 2019
Adversarial Examples Are a Natural Consequence of Test Error in Noise
Nic Ford
Justin Gilmer
Nicholas Carlini
E. D. Cubuk
AAML
36
318
0
29 Jan 2019
Improving Adversarial Robustness of Ensembles with Diversity Training
Sanjay Kariyappa
Moinuddin K. Qureshi
AAML
FedML
17
133
0
28 Jan 2019
Defense Methods Against Adversarial Examples for Recurrent Neural Networks
Ishai Rosenberg
A. Shabtai
Yuval Elovici
Lior Rokach
AAML
GAN
30
42
0
28 Jan 2019
An Information-Theoretic Explanation for the Adversarial Fragility of AI Classifiers
Hui Xie
Jirong Yi
Weiyu Xu
R. Mudumbai
AAML
26
3
0
27 Jan 2019
Improving Adversarial Robustness via Promoting Ensemble Diversity
Tianyu Pang
Kun Xu
Chao Du
Ning Chen
Jun Zhu
AAML
41
434
0
25 Jan 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
57
2,500
0
24 Jan 2019
Optimization Problems for Machine Learning: A Survey
Claudio Gambella
Bissan Ghaddar
Joe Naoum-Sawaya
AI4CE
30
178
0
16 Jan 2019
The Limitations of Adversarial Training and the Blind-Spot Attack
Huan Zhang
Hongge Chen
Zhao Song
Duane S. Boning
Inderjit S. Dhillon
Cho-Jui Hsieh
AAML
22
144
0
15 Jan 2019
Generating Adversarial Perturbation with Root Mean Square Gradient
Yatie Xiao
Chi-Man Pun
Jizhe Zhou
GAN
13
1
0
13 Jan 2019
Previous
1
2
3
...
23
24
25
26
27
Next