ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.02380
18
45

Detecting Overfitting via Adversarial Examples

6 March 2019
Roman Werpachowski
András Gyorgy
Csaba Szepesvári
    TDI
ArXivPDFHTML
Abstract

The repeated community-wide reuse of test sets in popular benchmark problems raises doubts about the credibility of reported test-error rates. Verifying whether a learned model is overfitted to a test set is challenging as independent test sets drawn from the same data distribution are usually unavailable, while other test sets may introduce a distribution shift. We propose a new hypothesis test that uses only the original test data to detect overfitting. It utilizes a new unbiased error estimate that is based on adversarial examples generated from the test data and importance weighting. Overfitting is detected if this error estimate is sufficiently different from the original test error rate. We develop a specialized variant of our test for multiclass image classification, and apply it to testing overfitting of recent models to the popular ImageNet benchmark. Our method correctly indicates overfitting of the trained model to the training set, but is not able to detect any overfitting to the test set, in line with other recent work on this topic.

View on arXiv
Comments on this paper