Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.07204
Cited By
Ensemble Adversarial Training: Attacks and Defenses
19 May 2017
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Ensemble Adversarial Training: Attacks and Defenses"
50 / 1,343 papers shown
Title
Adversarial Explanations for Understanding Image Classification Decisions and Improved Neural Network Robustness
Walt Woods
Jack H Chen
C. Teuscher
AAML
18
46
0
07 Jun 2019
Robust Attacks against Multiple Classifiers
Juan C. Perdomo
Yaron Singer
AAML
18
10
0
06 Jun 2019
Stochasticity and Robustness in Spiking Neural Networks
W. Olin-Ammentorp
K. Beckmann
Catherine D. Schuman
J. Plank
N. Cady
25
12
0
06 Jun 2019
CANet: An Unsupervised Intrusion Detection System for High Dimensional CAN Bus Data
Markus Hanselmann
Thilo Strauss
Katharina Dormann
Holger Ulmer
12
156
0
06 Jun 2019
Multi-way Encoding for Robustness
Donghyun Kim
Sarah Adel Bargal
Jianming Zhang
Stan Sclaroff
AAML
18
2
0
05 Jun 2019
RL-Based Method for Benchmarking the Adversarial Resilience and Robustness of Deep Reinforcement Learning Policies
Vahid Behzadan
W. Hsu
AAML
OffRL
13
8
0
03 Jun 2019
Fast and Stable Interval Bounds Propagation for Training Verifiably Robust Models
P. Morawiecki
Przemysław Spurek
Marek Śmieja
Jacek Tabor
AAML
OOD
11
8
0
03 Jun 2019
Enhancing Transformation-based Defenses using a Distribution Classifier
C. Kou
H. Lee
E. Chang
Teck Khim Ng
37
3
0
01 Jun 2019
Are Labels Required for Improving Adversarial Robustness?
J. Uesato
Jean-Baptiste Alayrac
Po-Sen Huang
Robert Stanforth
Alhussein Fawzi
Pushmeet Kohli
AAML
16
331
0
31 May 2019
Bandlimiting Neural Networks Against Adversarial Attacks
Yuping Lin
A. KasraAhmadiK.
Hui Jiang
AAML
6
6
0
30 May 2019
Securing Connected & Autonomous Vehicles: Challenges Posed by Adversarial Machine Learning and The Way Forward
A. Qayyum
Muhammad Usama
Junaid Qadir
Ala I. Al-Fuqaha
AAML
27
187
0
29 May 2019
Cross-Domain Transferability of Adversarial Perturbations
Muzammal Naseer
Salman H. Khan
M. H. Khan
Fahad Shahbaz Khan
Fatih Porikli
AAML
33
145
0
28 May 2019
Improving the Robustness of Deep Neural Networks via Adversarial Training with Triplet Loss
Pengcheng Li
Jinfeng Yi
Bowen Zhou
Lijun Zhang
AAML
37
36
0
28 May 2019
Scaleable input gradient regularization for adversarial robustness
Chris Finlay
Adam M. Oberman
AAML
16
77
0
27 May 2019
Non-Determinism in Neural Networks for Adversarial Robustness
Daanish Ali Khan
Linhong Li
Ninghao Sha
Zhuoran Liu
Abelino Jiménez
Bhiksha Raj
Rita Singh
OOD
AAML
11
3
0
26 May 2019
Purifying Adversarial Perturbation with Adversarially Trained Auto-encoders
Hebi Li
Qi Xiao
Shixin Tian
Jin Tian
AAML
24
4
0
26 May 2019
Trust but Verify: An Information-Theoretic Explanation for the Adversarial Fragility of Machine Learning Systems, and a General Defense against Adversarial Attacks
Jirong Yi
Hui Xie
Leixin Zhou
Xiaodong Wu
Weiyu Xu
R. Mudumbai
AAML
22
6
0
25 May 2019
Enhancing Adversarial Defense by k-Winners-Take-All
Chang Xiao
Peilin Zhong
Changxi Zheng
AAML
24
97
0
25 May 2019
Thwarting finite difference adversarial attacks with output randomization
Haidar Khan
Daniel Park
Azer Khan
B. Yener
SILM
AAML
38
0
0
23 May 2019
A Direct Approach to Robust Deep Learning Using Adversarial Networks
Huaxia Wang
Chun-Nam Yu
GAN
AAML
OOD
16
77
0
23 May 2019
Convergence and Margin of Adversarial Training on Separable Data
Zachary B. Charles
Shashank Rajput
S. Wright
Dimitris Papailiopoulos
AAML
31
16
0
22 May 2019
Adversarially robust transfer learning
Ali Shafahi
Parsa Saadatpanah
Chen Zhu
Amin Ghiasi
Christoph Studer
David Jacobs
Tom Goldstein
OOD
15
114
0
20 May 2019
What Do Adversarially Robust Models Look At?
Takahiro Itazuri
Yoshihiro Fukuhara
Hirokatsu Kataoka
Shigeo Morishima
19
5
0
19 May 2019
Percival: Making In-Browser Perceptual Ad Blocking Practical With Deep Learning
Z. Din
P. Tigas
Samuel T. King
B. Livshits
VLM
39
29
0
17 May 2019
Simple Black-box Adversarial Attacks
Chuan Guo
Jacob R. Gardner
Yurong You
A. Wilson
Kilian Q. Weinberger
AAML
22
568
0
17 May 2019
On Norm-Agnostic Robustness of Adversarial Training
Bai Li
Changyou Chen
Wenlin Wang
Lawrence Carin
OOD
SILM
8
7
0
15 May 2019
An Efficient Pre-processing Method to Eliminate Adversarial Effects
Hua Wang
Jie Wang
Z. Yin
AAML
14
1
0
15 May 2019
Harnessing the Vulnerability of Latent Layers in Adversarially Trained Models
M. Singh
Abhishek Sinha
Nupur Kumari
Harshitha Machiraju
Balaji Krishnamurthy
V. Balasubramanian
AAML
19
61
0
13 May 2019
A Comprehensive Analysis on Adversarial Robustness of Spiking Neural Networks
Saima Sharmin
Priyadarshini Panda
Syed Shakib Sarwar
Chankyu Lee
Wachirawit Ponghiran
Kaushik Roy
AAML
24
66
0
07 May 2019
Adaptive Generation of Unrestricted Adversarial Inputs
Isaac Dunn
Hadrien Pouget
T. Melham
Daniel Kroening
AAML
20
7
0
07 May 2019
Better the Devil you Know: An Analysis of Evasion Attacks using Out-of-Distribution Adversarial Examples
Vikash Sehwag
A. Bhagoji
Liwei Song
Chawin Sitawarin
Daniel Cullina
M. Chiang
Prateek Mittal
OODD
32
26
0
05 May 2019
When Attackers Meet AI: Learning-empowered Attacks in Cooperative Spectrum Sensing
Z. Luo
Shangqing Zhao
Zhuo Lu
Jie Xu
Y. Sagduyu
AAML
25
53
0
04 May 2019
Weight Map Layer for Noise and Adversarial Attack Robustness
Mohammed Amer
Tomás Maul
17
4
0
02 May 2019
NATTACK: Learning the Distributions of Adversarial Examples for an Improved Black-Box Attack on Deep Neural Networks
Yandong Li
Lijun Li
Liqiang Wang
Tong Zhang
Boqing Gong
AAML
18
245
0
01 May 2019
Adversarial Training and Robustness for Multiple Perturbations
Florian Tramèr
Dan Boneh
AAML
SILM
28
375
0
30 Apr 2019
Adversarial Training for Free!
Ali Shafahi
Mahyar Najibi
Amin Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
L. Davis
Gavin Taylor
Tom Goldstein
AAML
68
1,231
0
29 Apr 2019
Non-Local Context Encoder: Robust Biomedical Image Segmentation against Adversarial Attacks
Xiang He
Sibei Yang
Linchao Zhu
Haofeng Li
Huiyou Chang
Yizhou Yu
9
62
0
27 Apr 2019
ZK-GanDef: A GAN based Zero Knowledge Adversarial Training Defense for Neural Networks
Guanxiong Liu
Issa M. Khalil
Abdallah Khreishah
AAML
22
18
0
17 Apr 2019
Semantic Adversarial Attacks: Parametric Transformations That Fool Deep Classifiers
Ameya Joshi
Amitangshu Mukherjee
S. Sarkar
C. Hegde
AAML
8
99
0
17 Apr 2019
Defensive Quantization: When Efficiency Meets Robustness
Ji Lin
Chuang Gan
Song Han
MQ
42
202
0
17 Apr 2019
Interpreting Adversarial Examples with Attributes
Sadaf Gulshad
J. H. Metzen
A. Smeulders
Zeynep Akata
FAtt
AAML
33
6
0
17 Apr 2019
AT-GAN: An Adversarial Generator Model for Non-constrained Adversarial Examples
Xiaosen Wang
Kun He
Chuanbiao Song
Liwei Wang
J. Hopcroft
GAN
13
32
0
16 Apr 2019
Detecting the Unexpected via Image Resynthesis
Krzysztof Lis
K. K. Nakka
Pascal Fua
Mathieu Salzmann
UQCV
14
175
0
16 Apr 2019
Adversarial Learning in Statistical Classification: A Comprehensive Review of Defenses Against Attacks
David J. Miller
Zhen Xiang
G. Kesidis
AAML
19
35
0
12 Apr 2019
Generating Minimal Adversarial Perturbations with Integrated Adaptive Gradients
Yatie Xiao
Chi-Man Pun
AAML
GAN
TTA
13
0
0
12 Apr 2019
Cycle-Consistent Adversarial GAN: the integration of adversarial attack and defense
Lingyun Jiang
Kai Qiao
Ruoxi Qin
Linyuan Wang
Jian Chen
Haibing Bu
Bin Yan
AAML
12
8
0
12 Apr 2019
Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks
Yinpeng Dong
Tianyu Pang
Hang Su
Jun Zhu
SILM
AAML
49
830
0
05 Apr 2019
HopSkipJumpAttack: A Query-Efficient Decision-Based Attack
Jianbo Chen
Michael I. Jordan
Martin J. Wainwright
AAML
33
654
0
03 Apr 2019
Curls & Whey: Boosting Black-Box Adversarial Attacks
Yucheng Shi
Siyu Wang
Yahong Han
AAML
18
116
0
02 Apr 2019
Updates-Leak: Data Set Inference and Reconstruction Attacks in Online Learning
A. Salem
Apratim Bhattacharyya
Michael Backes
Mario Fritz
Yang Zhang
FedML
AAML
MIACV
28
250
0
01 Apr 2019
Previous
1
2
3
...
22
23
24
25
26
27
Next